

A Vision of a Hydrogen Economy

Design of a Hydrogen Power Park

2005 H2U Design Contest

National Hydrogen Association, U.S Department of Energy, and ChevronTexaco Team Members: Allison Mendes, Shirley Leung, Hani Fadali, Gordon Graff, Bryan Icyk, Bartosz Lomanowski, Abhay Patel Advisor: Michael Fowler

Project Goal

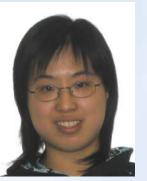
To design a feasible, innovative & safe *Hydrogen Power Park* that will refuel fuel cell vehicles and produce electricity

Team Vision

To generate greater demand for a *Hydrogen Fuel Economy*

Today's Topics

- The Team
- Park requirements
- Park Design
- Safety
- Economics
- Environmental Analysis
- Marketing Plan



Human Resources

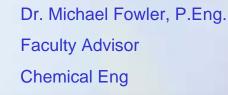
Allison Mendes Chemical Eng.

Shirley Leung Chemical Eng.

Bartosz Lomanowski Mechanical Eng.

Hani Fasali Electrical Eng.

The Team!


Bryan Icyk Business/Marketing

Abhay Patel Chemical Eng.

Gordon Graff Architect

Your Energy Source

Hydrogen Power Park

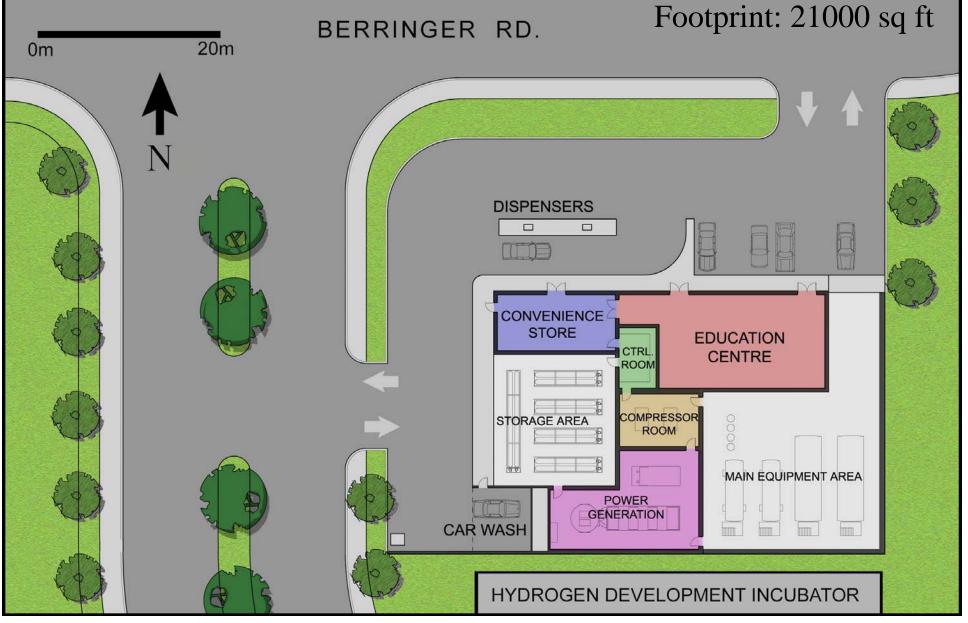
Park Requirements

 The park will commence service in 2010 for a ten year service life

- Generated and stored hydrogen on-site
- Increase capacity from 50 kg/day to 250 kg/day at 5 kg/car
- Maximum footprint: 21000 sq ft
- Provide a minimum of 100 kW of electrical power using green energy
- Use commercially available equipment

Park Design – Waterloo is A Perfect Location!

- Become one of the pit stops along the Hydrogen Corridor between Windsor-Montreal
- Affiliation with the University of Waterloo
 - Education tool for university research
 - Encourage evolution of hydrogen technology



Location:

Waterloo Research and Technology Park

Park Design – 2D Site Plan

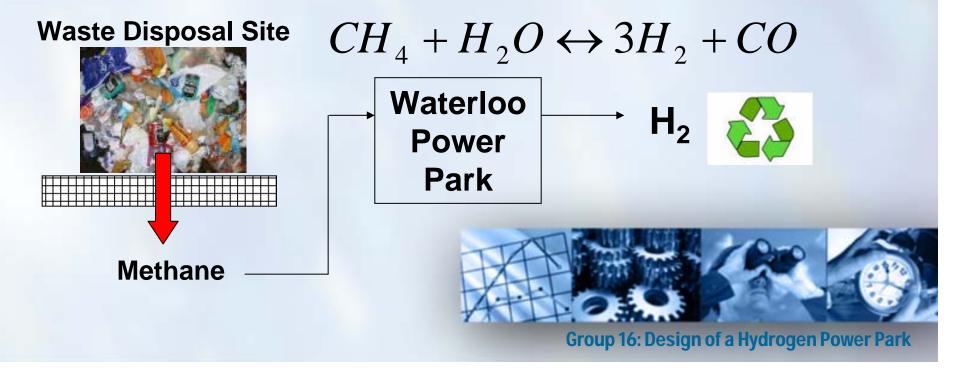
Hydrogen Development Incubator

Aims:

- To develop and promote hydrogen production and distribution
- Enhance the developmental and research efforts by serving as a 'think tank'

Public Education Centre

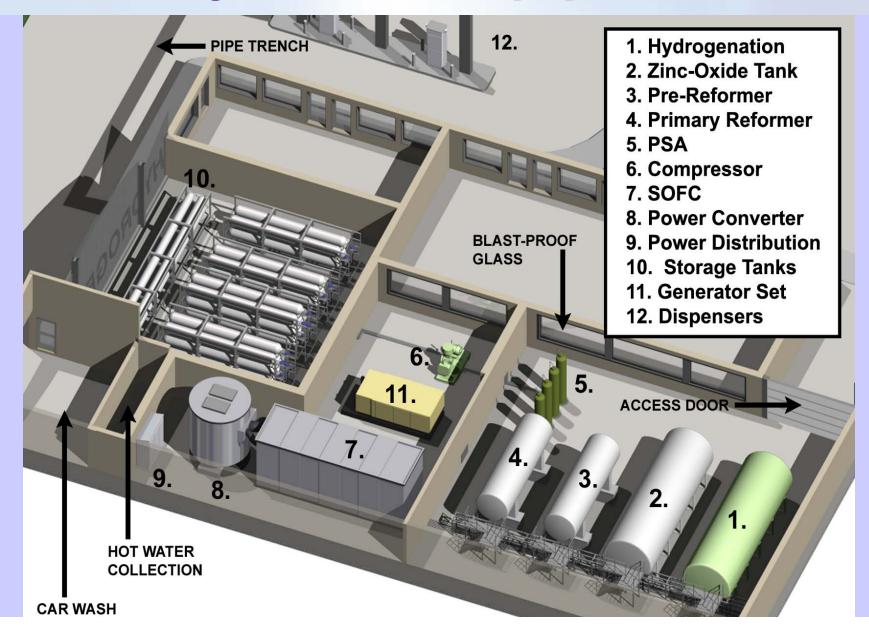
 Located in the Power Park for students and public to learn about hydrogen production and its advantages

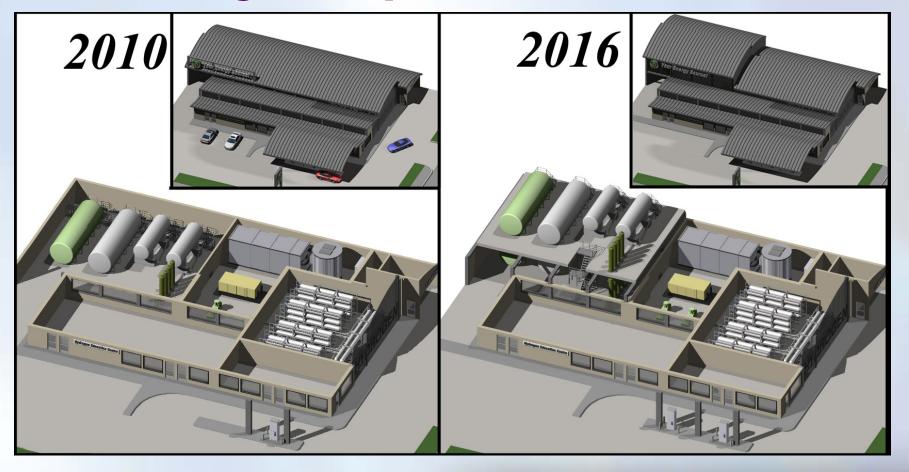

Features of Educational Facility

- Cut-away models of hydrogen vehicles and equipments
- Posters

Park Design- Renewable Feed Source

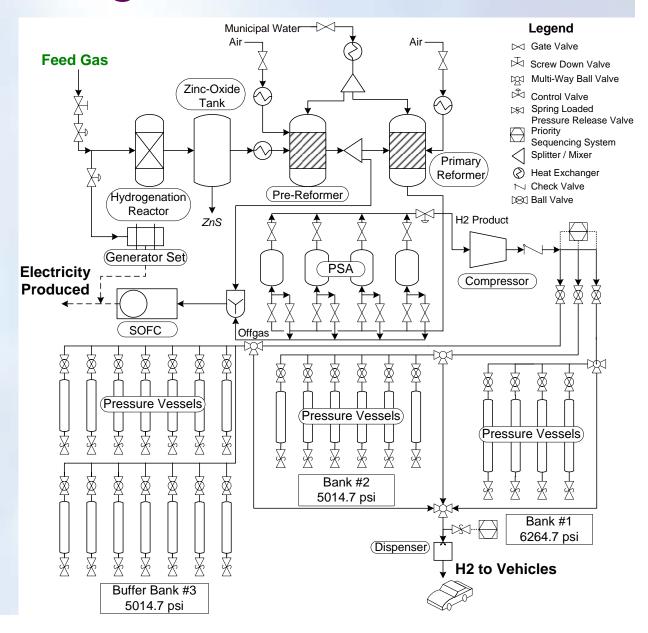
- Renewable and relatively cheap feed source
- The process feed will be composed from a landfill gas from the Waterloo Landfill site in Southwest Ontario
- Landfill gas cost \$0.045/m³ compared to \$0.315/m³ for Natural Gas!


Park Design – 3D Rendering [Side View]


Park Design – 3D Rendering (Top View]

Park Design – Process Equipment (3D)

Park Design – Expansion in 2016



Process Flow Diagram

•Conditioned landfill gas (≈ natural gas) is supplied by pipeline to power park

•The gas is reformed, compressed and stored onsite at high pressures and finally dispensed to FCVs.

•Electricity is generated by a 125 kW SOFC using a mix of partially reformed gas and PSA waste gas.

Park Design- Rational for Equipment Selection

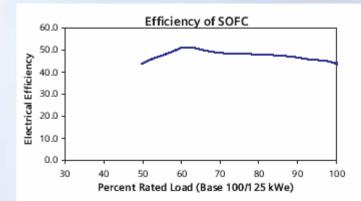
Pre-reformer - Hydrogenics Corp.

- Increases % conversion of methane to hydrogen in SMR due to increased steam to carbon ratio (S:C).
- Act as a sulphur guard (extends life of expensive SMR & SOFC)

SMR (Steam methane reformer) - Hydrogenics Corp.

- Significantly less expensive than an electrolyser Based only on energy and capital costs:
 - electrolyser \$555 US/kg
 - reformer \$1.6 US/kg

PSA (Pressure Swing Adsorption) - Hydrogenics Corp.


 Purity of product stream yields 99.95% H₂

Park Design- Rational for Equipment Selection

125 kW Solid Oxide Fuel Cell (SOFC)

- Siemens Westinghouse Power Corp
- Lowest emissions of any power plant using natural gas
- Incorporates a power conditioning system to convert DC to AC
- High electrical efficiency even at part load

2-Stage Diaphragm Compressor - Products Industries Inc.

- Completely isolates process gas (pure H₂) from contamination
- Relatively low maintenance

Park Design- Rational for Equipment Selection

Compressed Gas Storage System - CP Industries

- 3 storage banks under 2 different pressures
- Cascade filling system to minimize hydrogen storage capacity
- 1-day buffer storage capacity (load flexibility)

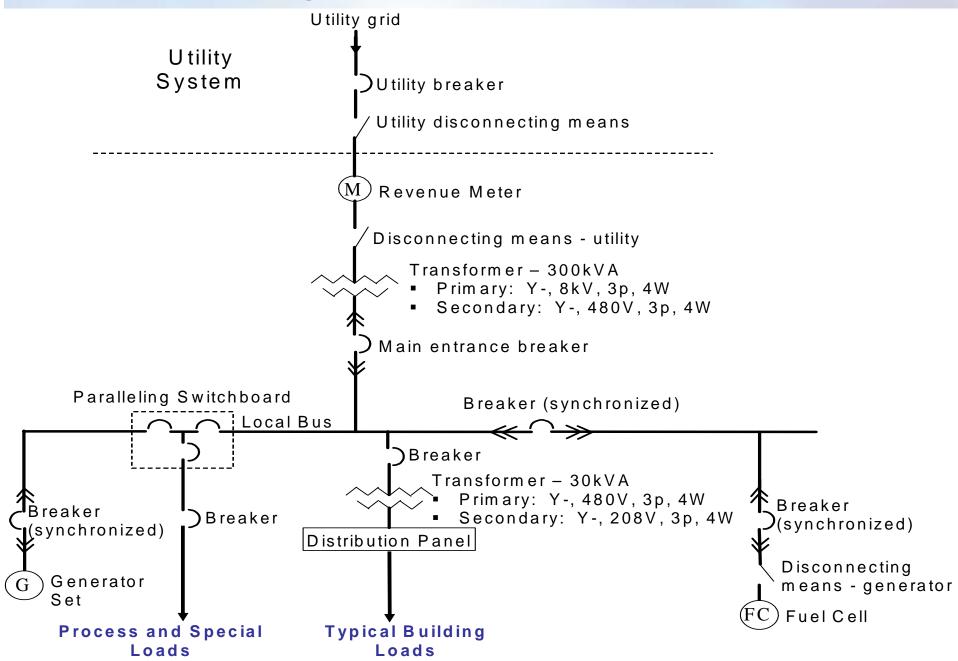
Bank1: 4x764.6 L (6264.7 psi)

Bank2: 6 x 968.4L (5014.7 psi)

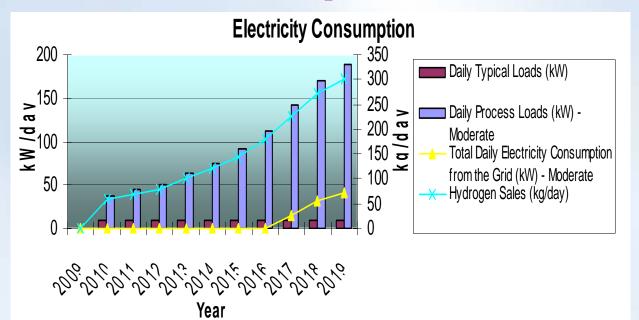
Bank3: 14x 968.4L (buffer)

H₂ Dispenser - Fueling Technologies Inc.

- One dispenser with a single, side oriented, nozzle
- Provides temperature compensated fills (safety feature)



Park Design-Electrical System


- A safe, realistic and practical design that adheres to all applicable codes and standards
- SOFC operates in parallel with the grid
 - Reduce the need to purchase electricity
 - Supplies critical site power in case of power outage
 - Selling power to grid is unprofitable
- 100 kW generator set for stand-by operation in case of an outage on the supply utility system

Interconnection Diagram of Power Production Sources with Loads

Electrical Requirements

The SOFC produces less CO₂ emissions than grid power.

SOFC: 440g of CO₂ per kWh

Grid: 453g of CO₂ per kWh

SOFC: Able to produce 3000kWh/day and will only produce energy as required.

As the energy consumption increases beyond 3000kWh/day, the difference is drawn off the local power grid.

Safety Considerations in the Park Design

4 major failure modes and their preventive measures:

1. Human Error

adequate employee training visible warning signs and instructions

- 2. Gas Leakages built according to standards, regular inspections
- 3. Equipment Failure

scheduled maintenance as suggested by manufacturers

4. Terrorism

security cameras, card-accessed entrances

Safety Considerations in the Park Design

When there is hydrogen Fire /Leakage:

➢ Infrared/UV sensors, smoke detectors, flow sensors → audible alarms + red flashing light + emergency fail-safe shutdown → emergency dispatcher → fire department

Hydrogen Properties 1

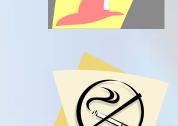
- Flammable
- Non-toxic
- Odourless
- Colorless gas
- Small molecular size
 - prone to leakage
- Compare to natural gas
- Diffuses in air 3.8x faster
- Rise 6x faster

- Invisible flame (unless coloured by impurities)
 - significantly less radiant heat than hydrocarbon fire
 - reduce the risk of secondary fires
 - but less warning as one approaches the invisible flame

Group 16: Design of a Hydrogen Power Park

Hydrogen Properties 2

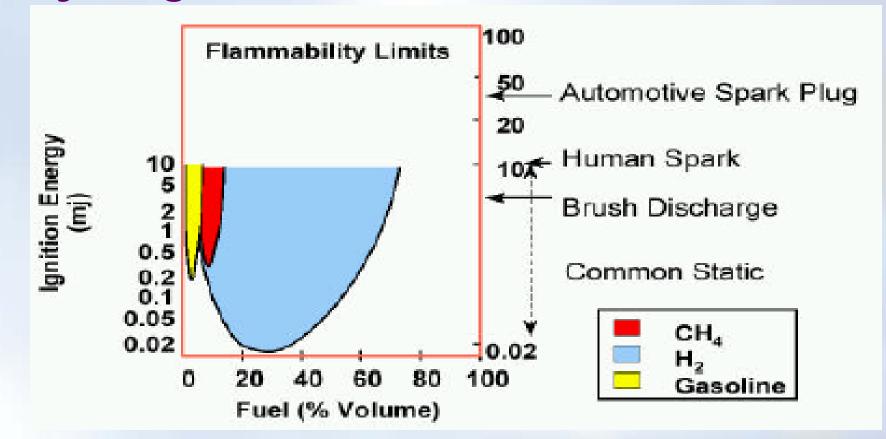
Combustion


- Hydrogen → water vapour
- Natural gas (incomplete combustion) → toxic CO & CO2, water

Flammable mixture

 As long as ventilation is adequate, the probability of hydrogen forming a flammable mixture with air is very low

Leak


- Large leak \rightarrow flammable cloud + ignition source \rightarrow fire/explosion
 - strict prohibition of open flames (e.g. smoking) and cell phone usage

Hydrogen vs Natural Gas vs Gasoline

Flammability limits and ignition energy of H2, CH4 and gasoline with air

Flammability range of hydrogen is 7 times wider than methane

Safety Analysis

Advantages

- Safety analysis at conceptual stage:
 - opportunity for inherently safer design solutions
 - more cost-effective to operate the power park
- Reduce chance of:
 - process safety related incidents
 - downtime and financial losses
 - losing public confidence

HAZOP (Hazard and Operability)

Process Section	Parameter	Deviation	Causes	Consequences	Safeguards/Mitigations

HAZOP Methodology

- Logical & systematic approach for identifying potential hazards
- Creates deviations from the process design intent
- Only warrants qualitative analysis; not quantitative
- Conventional group approach discarded
 - Lack of experienced human resources

GUIDE WORDS: more, higher, longer, less, lower, shorter, as well as, also, part of, reverse, other than, sooner, lower.

HAZOP Results Summary

Equipment of the highest risk:

Dispenser

Human error preventions:

- Trained operator to refuel vehicles
- Clear labels / instructions:
 - Manual emergency shutoff valves labelled with direction of turning
 - Pipelines labelled with direction of flow

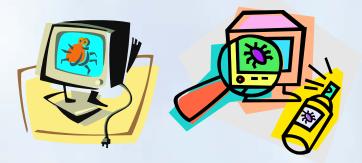
HAZOP Results Summary

Sparks generation preventions:

- Permanent bonding and grounding of equipments
- Grounding of person doing maintenance work
- Use tools that do not generate sparks

Sabotage/terrorism preventions:

- Surveillance/security system
- Remote manual emergency shutdown system


High Risk Situations

1. Maintenance, start-up and shut-down of equipment

- Venting or bleeding device to depressurize gas before dismantling
- Start-up procedures (e.g. purging with an inert gas)

2. Control system fault

- Cause: grid power outage
 - SOFC & generator set can supply power to control system.
- Cause: virus/hacking
 - Anti-virus and firewall softwares
- Watchdog timer to monitor status of the control computer

Essential Safety Components

Instruments

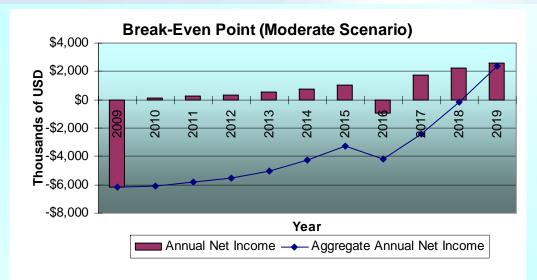
- Flammable gas detectors
- Smoke detectors
- UV/infrared hydrogen flame detectors
- Manual + automatic safety shutoff valves
- Pressure relief valves
- Grounding/bonding

Systems:

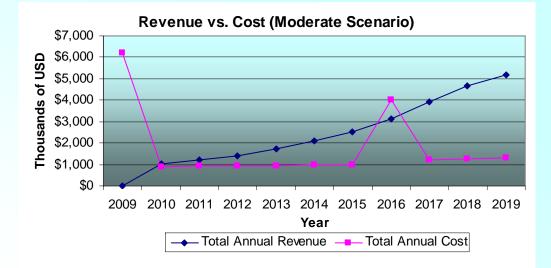
- Redundant fail-safe shutdown (automatic and manual)
- Emergency ventilation
- Emergency power
- Security

Economics – Purchase Costs

\$62,988 Dispenser Compressor \$97,660 **Storage System** \$198,000 100 kW SOFC \$200,000 Primary Reformer (2) \$1,600,000 \$1,400,000 **Pre-Reformer (2) Control System** \$200,000 Hydro-desulf. unit (2) \$200,000 Zinc-Oxide Bed (2) \$200,000 \$50,000 **PSA** piping, etc. \$50,000 \$1,000,000 Land **Building** \$1,000,000 \$200,000 **Construction Costs**


Total Purchase Cost \$6,458,648 US

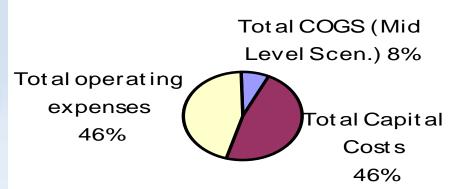
> LET'S FIGURE OUT WHAT MAKES US THE MOST PROFIT, AND THEN DO MORE OF IT.



Economics - Profitability

Break-even point: 2018 Payback period: 9 years.

Average production cost of H2: \$33.95/kg

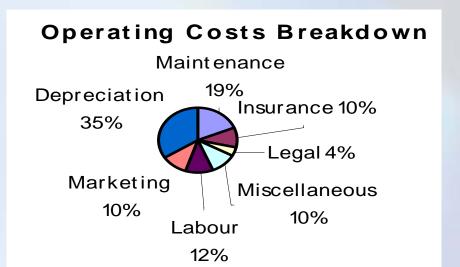

Total revenue: \$26.9 M

•Mostly from hydrogen sales (\$22.6 M, \$53.38/kg)

•Other sources: convenience store, carbon emissions credits

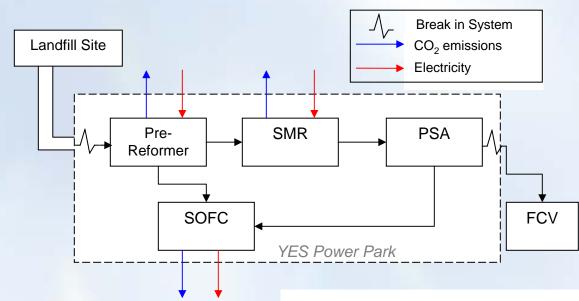
Economics – Cost breakdown

Total Cost Breakdown

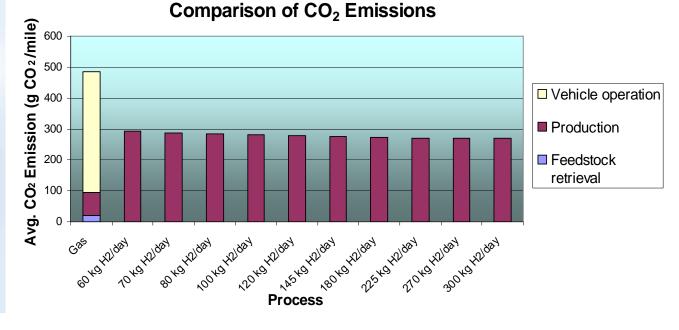

Total capital costs: \$9.1M

- Purchase cost
- Applicable taxes (15%)
- Installation and transportation (2% of purchase cost)

Average cost of goods sold: \$138K


- Electricity consumption
- Feed gas
- Convenience store

Operating costs: start at \$846K in 2010 and rise with the projected rate of inflation


Environmental Analysis

Adopting hydrogen process reduces automobile-related emissions by at least 40%

As more hydrogen is produced per year, the average grams of CO_2 per mile decrease.

The major CO₂ emissions are localized at the power plant which makes CO₂ capture achievable.

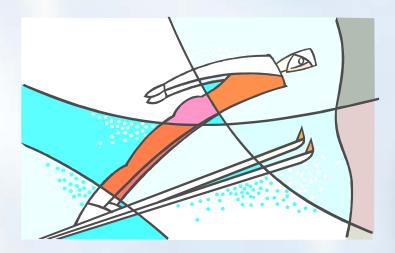
Marketing Plan

Targets

- **1. Fuel cell vehicle owners:**
 - *i.* Businesses operating FCV fleets
 - *ii.* Early adopters.
- 2. Waterloo community

Marketing Strategies

 \triangleright


- Promote and support early adopters (e.g. ChallengeX Vehicle)
- Position hydrogen as an attractive fuel source (e.g. use of education center)
- ✓ Accelerate commercialization of the hydrogen economy
 - Looks and behaves like a gasoline station
 - Align the park with the Toronto Hydrogen Village
 - Located next to a Hydrogen Development Incubator

Marketing Plan - Implementation

- The launch of the marketing campaign will corresponds with the 2010 Winter Olympic Games in Vancouver, British Columbia
 - Anticipated that hydrogen and related technologies will receive a significant amount of national and international exposure

Summary

- More than just a hydrogen refuelling station
- Development Incubator + education center to promotes the adoption of hydrogen technology
- ✓ Feasible, innovative & safe
- ✓ Reduce and localize emissions
- Marketing plans to achieve hydrogen acceptance

Driving Clean?

A fuel cell vehicle that runs on hydrogen is a clean, environmentally friendly alternative to gasoline. Hydrogen reduces the impa of air pollution and global warming because it does not emit any of the harmful pollutants found in gasoline. **YES** hydrogen statio provide fuel that is as safe and as reliable as conventional gasoline, plus the only by-product generated by **YES** hydrogen is pu water. So, do yourself and the environment a favour - fill up with **YES** hydrogen and start driving clean today.

For more information about fuelling your vehicle with YES hydrogen, call 800-YESINFO or visit yeswaterloo.ca



Questions?

