Model Development and Validation of Solid Oxide Fuel Cells (SOFCs) Using H₂-H₂O-CO-CO₂ Mixtures: From Button Cell Experiments to Tubular and Planar Cells

> By Rapeepong Suwanwarangkul

Supervisors : Professors E. Croiset, M. Fowler & P. Douglas Collaborator : Dr. Evgueniy Entchev, CANMET

Department of Chemical Engineering University of Waterloo

Introduction

General Approach of Mechanistic Modelling

- Experiments & Model:
 - Button Cell
- Simulation:
 - Cathode-Supported Tubular SOFCs (TSOFCs)
 - Anode-Supported Planar SOFCs (PSOFCs)
- Conclusions & Recommendations

High system efficiency

Low emissions

Manufactured with Low Cost Materials

 \triangleright Accommodate synthesis gas (H₂/CO)

Little research involving synthesis gas

- Past studies were essentially experimental research.
- Very few modelling works have focused on synthesis gas.

Objectives

Develop and validate a steady-state mechanistic model for a single cell SOFC operating with mixtures of H₂, CO, CO₂, H₂O and N₂.

Gain insight into the fundamental physics of momentum, heat, mass and charge transport in various SOFC designs.

Investigate the impact of temperature, pressure, flow rate and mixture compositions on SOFC performance, fuel and air utilization factors, exit gas compositions and cell temperature.

General Approach of Mechanistic Modelling

Electrochemical reactions $H_2 \& CO$ oxidation at anode O_2 reduction at cathode

Chemical reactions Water-gas shift reaction Carbon formation

Mechanistic Model

Momentum transport Navier-Stokes equation

Current density distribution Flow & pressure distribution Cell performance Energy transport Heat conduction, convection & radiation Heat consumption/generation by chemical & electrochemical reactions

> Mass transport Mass diffusion and convection Mass consumption/generation by chemical & electrochemical reactions

> > Charge transport Ion transport Electron transport

Species concentration distributions Temperature distribution Exit gas compositions

Waterloo Button Cell Experiments & Model

- Performed at MTEC, Thailand.
- Electrolyte-supported cells (ESCs) from InDEC Co.
 - **Cell specifications:**
 - $60 \ \mu m \ Ni-CeO_2-YSZ \ anode$ $50 \ \mu m \ La_{0.7}Sr_{0.2}MnO_{3-\delta} (LSM) \ anode$ $130 \ \mu m \ 3 \ mol\% \ YSZ \ (TZ3Y) \ electrolyte$ $16 \ cm^2 \ active \ area$
- Experimental objective: study the effects of
 - N_2 dilution
 - CO₂ dilution
 - H₂+CO mixtures
 - Simulated synthesis gases

On the cell performance at 800°C and 900 °C

Electrochemical cell

CETC

- Electrolyte

Button Cell Mathematical Model

CETC

Assumptions

Waterloo

- Negligible mass-transport and ohmic resistances within the porous electrodes.
- ➢ Uniform temperature and gas density.
- > Occurrence of electrochemical reactions and the WGSR at electrode/electrolyte interfaces.

Algorithm for Model Calibration

From the model: specified cell potential (V_{cell}) to calculate the average current density

$$J_{\text{avg}} = 2r_b^{-2} \int_0^{r_b} r \left(J_{H_2} + J_{CO} \right)_{\chi = \chi_{An}} dr$$

Actual cell potential delivered to the load ($V_{delivered}$) was estimated as:

Waterloo

 $V_{delivered} = V_{cell} - J_{avg} \times R_{Contact}$

 $R_{Contact}$ was determined by calibrating the model against experimental data using humidified H₂ as the fuel source for cell operating at 800°C and 900°C.

> Then, $R_{Contact}$ obtained from humidified H₂ was used for the entire experimental investigation of the effect of syngas compositions at each cell operating temperature.

 $\succ R_{Contact}$ at 800°C and 900°C were estimated to be 1.6 Ω cm² and 1.2 Ω cm², respectively.

Exp. & Model Results for H₂+CO Mixtures

 \succ CO is a useful fuel for SOFC.

Reason : the contributions of the cathodic & ohmic overpotentials to the overall performance are higher than the anodic overpotential.

Exp. & Model Results for Simulated Synthesis Gases

Fuel	Gas compositions (%)					
no.	\mathbf{H}_{2}	H ₂ O	CO	CO ₂	N ₂	
F1	97	3	-	-	-	
F2	20	3	-	_	80	
F3	20	3	-	14	66	
F4	20	3	20	14	43	
F5	32	3	45	15	3	
F6	20	3	20	0	57	

Cell performance comparison F1 > F6 > F2 > F5 > F4 > F3

Anode delamination should be related to carbon formation.

Waterloo Prediction of Carbon Formation

Study the effect of CO portion and current density on the risk of carbon formation for various operating temperatures, pressures and H₂ & CO₂ compositions.

<u>Carbon formation reaction</u> $(2CO \rightarrow C + CO_2)$

Mainly caused by the Boudouard reaction.

No well established kinetic data.

 \succ Carbon activity ($\alpha_{\rm C}$) is used to justify the

occurrence of this reaction.

Carbon formation is unfavoured if $\alpha_C < 1$

Prediction of Carbon Formation (Cont'd)

10% ĊO,

0.8

20% CO,

 \triangleright Adding H₂O or CO₂ into fuel gas results in reducing the risk of carbon formation at the expense of cell performance.

 \geq 20% of H₂O or CO₂ is good enough to avoid the risk of carbon formation.

Simulation of Cathode-Supported Tubular SOFCs

Waterloo

Model Assumptions

Steady-state, non-isothermal operation using humidified H_2 and synthesis gas (H_2 , CO, CO₂, H_2 O, N₂).

Laminar flows in the gas channels.

➢ In the case of synthesis gas fuel, constant velocity along the fuel channel.

Only heat conduction within the porous cathode.

Occurrence of heat radiation between the air-preheating tube and cell structure.

Negligible electronic resistances through the electrode thicknesses.

Negligible mass-transfer resistance through the porous anode.

Cell Performances for Various Syngas Compositions

Model Inputs

- Cell geometry = Based on Hagiwara *et al.* (1999)
- Fuel utilization = 85%
- \triangleright O₂ utilization = 16.7%
- > Inlet fuel temperature = 870 °C
- > Inlet air temperature = $600 \text{ }^{\circ}\text{C}$
- \blacktriangleright Operating pressure = 1 atm
- \blacktriangleright Cell potential = 0.7 V
- Fuel inlet composition (%)

 $F1 = 97 H_2 / 3 H_2O / 0 CO / 0 CO_2 / 0 N_2$ $F2 = 20 H_2 / 3 H_2O / 0 CO / 14 CO_2 / 43 N_2$ $F3 = 20 H_2 / 3 H_2O / 20 CO / 14 CO_2 / 43 N_2$ $F4 = 32 H_2 / 3 H_2O / 45 CO / 15 CO_2 / 3 N_2$ $F5 = 20 H_2 / 3 H_2O / 20 CO / 0 CO_2 / 57 N_2$ Effect of syngas compositions on the cell performance

Fuel	Power density	Thermal efficiency	Average cell temperature	
	(W/cm^2)	$\begin{pmatrix} 0/0 \end{pmatrix}$	$(^{\mathrm{o}}\mathrm{C})$	
F1	0.24	53.80	1040	
F2	0.11	48.20	929	
F3	0.12	41.56	940	
F4	0.13	40.50	935	
F5	0.15	38.20	933	

 \succ Cell performance obtained from humidified H₂ is greater than the cell performances obtained synthesis gases.

Power density is increased at reduced efficiency.

Flow Behaviour & Gas Conc. using Humidified H_2 as Fuel

Flow behaviour

Gas concentration distributions

(mole fraction)

Gas Concentration Distributions using Synthesis Gases as Fuel

Variation of Cell Operating Parameters

▶ Base on F3 fuel: 20% H_2 , 20% CO, 14% CO₂, 3% H_2 O & 53% N_2

➢ In order to perform the parametric study, only one parameter is changed from the base case conditions at a time.

Cell parameter	Cell performance indices					
	Cell power	Cell efficiency	Fuel utilization	Average cell temperature	Outlet CO ₂ concentration	
Inlet fuel flow rate	Increase	Increase	Decrease	Increase	Decrease	
Inlet air flow rate	Decrease	Decrease	Decrease	Decrease	Decrease	
Inlet fuel temperature	Increase	Increase	Increase	Increase	Increase	
Inlet air temperature	Increase	Increase	Increase	Increase	Increase	
Operating pressure	Increase	Decrease	Decrease	Increase	Decrease	
Cell potential	Decrease Increase	Decrease Increase	Increase	Increase	Increase	

Conclusions

Button Cell Experiment and Model Validation

- CO is a useful fuel for SOFCs.
- Carbon formation has a significant impact on the cell performance.
- > The effect of CO_2 dilution is more pronounced than that of N_2 dilution.
- > The validated mechanistic model of the button-cell SOFC was developed.
- > The risk of carbon formation increases when the SOFC is operated at intermediate temperature (800°C or below) and high pressure (greater than 1 atm).
- Adding H_2O or CO_2 into synthesis gases containing high CO portion help reduce the risk of carbon formation.

Conclusions (Cont'd)

Simulation of Cathode-Supported Tubular SOFCs

The validated mechanistic model of the cathode-supported tubular SOFCs was successfully developed.

 \triangleright Cell performance achieved from tubular SOFCs operating with humidified H₂ is greater than that obtained from synthesis gas.

Syngas composition has a significant impact on the cell performance.

From sensitivity analysis, the operating cell potential plays the most important role in changing cell performance.

Waterloo

Recommendations

- Construct a new test rig that allows air and fuel utilization factors.
- Study the reliability of cell performance for cell operating with synthesis gas.
- Develop the dynamic model.
- Develop mechanistic models for other geometries such as flat-plate tubular cell and cross-flow planar cell.
- Develop a model for indirect-internal-reforming SOFCs.

Acknowledgements

➢ Financial support by the Canadian Program for Energy Research and Development (PERD) and the CANMET CO₂ consortium.

Financial support by the National Metals and Materials Technology Centre (MTEC), Thailand.

Profs. P. Douglas, E. Croiset & M. Fowler from UW.

Dr. Evgueniy Entchev from CETC.

Prof. Paritud Bhandhubanyong & Dr. Sumittra Charojrochkul from MTEC.

Researchers from MTEC SOFC research group.