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OUTLINE

• Introduction to Fuel Cell Technology
• Endurance Run of a Single Cell
• Reliability of Fuel Cells
• Voltage Degradation in PEM Fuel Cells
• Modelling of PEM Fuel Cell Degradation
• Conceptual Reliability Analysis a of PEM 

Fuel Cell Stack
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SURVEY OF FUEL CELL 
DEVELOPERS

• “For continuous use products, one game 
changer may be accelerated testing of the fuel 
cell.  There are currently no accurate models 
for forecasting failure modes, which is why 
our products are fairly short lived. We base 
their lifetime on actual data we have”

• Fuel Cell Industry Report, January 2002, Vol 3, No 1., 
Alexander Communications Group Inc.
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WHY FUEL CELLS FOR 
POWER GENERATION

• High Efficiency
• Low Environmental Burden and Emissions
• High Reliability
• Flexibility of Design
• Easily Refuelled
BARRIERS TO MARKET ACCEPTANCE OF 

FUEL CELLS
• Cost
• Endurance and reliability
• Refuelling infrastructure and ‘supply chain’ 

are not in place
• Public Perception of hydrogen
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GOALS

• Identify key failure modes associated 
with PEM fuel cells

• Develop a Generalized Steady State 
Electrochemical Degradation Model with 
ageing or  voltage degradation terms

• Develop a conceptual model for fuel cell 
stack reliability
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FUEL CELL OPERATION
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PEM FUEL CELL SYSTEM

Exhaust

DC AC Power

Fuel: Natural Gas, 
Synthesis gas, 
landfill gas, 

distillate, methanol, 
propane

Fuel 
Processor 
and Gas 
Clean-up

Hydrogen 
Rich Gas

Water

Fuel Cell 
Stack

Power 
Conditioner

Co-generation
Heat

Exhaust

Energy

Air

Air
Exhaust



Michael Fowler – University of Waterloo

FUEL CELL HARDWARE
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FUEL CELL TEST STATION
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Labview VI – Monitoring System



Ideal and Actual Fuel Cell 
Voltage/Current Characteristics
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VOLTAGE DEGRADATION CURVE 
FOR A SINGLE PEM CELL

(Operated at 80°C, 0.4 amp cm-2, 30 psig/30 psig, H2/Air – stoichiometric ratios 1.2/2)
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RELIABILITY JARGON

• Durability - ability to resist permanent change in 
performance over time, i.e. degradation or 
irreversible degradation.  This phenomena is 
related to ageing.

• Reliability - The ability of an item to perform the 
required function, under stated conditions, for a period 
of time. Combination of degradation, and failure modes 
that lead to catastrophic failure.

• Stability - recoverable function of efficiency, voltage or 

current density decay or reversible degradation.



Failure of the plate
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E-TEK MEA
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E-TEK MEA

 

 

 

Smooth, unbroken and even carbon fibres on gas 
diffusion layer. 

Polymer and impregnation and no debris can be 
seen. 
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ENDURANCE TESTED MEA

Polymer Deposit Seen
through-out Electrode

Debris seen in various
Location.  Likely seal
oxidation products.



Michael Fowler – University of Waterloo

Seal Oxidation
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SCORCHING ALONG THE EDGE
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SCORCHING
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SUMMARY OF OBSERVED 
FAILURE

Tear on
Disassembly

Oxidation of
Seals can be
seen on MEA

Flow Path can be seen
imprinted on carbon
cloth. More
pronounced when wet.

Discolouration on
Edge

Tear or Burn-through
on the edge of active
region
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FMEA OF A FUEL CELL

• Plate
– Cracking 
– Scorching 
– Change in the Plate which will impact the MEA

• Dimensional changes (warping, erosion, misalignment) 
• Contamination or debris released

• Seal Failure
• MEA

– Pinhole Formation
– Shorting 
– Degradation of Voltage
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VOLTAGE DEGRADATION

• Voltage Degradation will be the main factor 
governing the ‘life’ of the stack itself (i.e. time 
in service, performance and reliability at end of 
life)

• Degradation must be accommodated for in 
control systems

• Will be important in Life Cycle Analysis 
(especially the Life Cycle Costing)
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DEGRADATION FAILURE MODES  
(leading to degradation of performance or durability)

• Kinetic or activation loss in the anode or 
cathode catalyst –
Loss of Apparent Catalytic Activity

• Ohmic or resistive increases in the 
membrane or other components –
Loss of Conductivity

• Decrease in the mass transfer rate of in 
the reactants flow channel or electrode –
Loss of Mass Transfer Rate of Reactants
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VOLTAGE DEGRADATION 
MODES
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VOLTAGE DEGRADATION CURVE 
FOR A SINGLE PEM CELL

(Operated at 80°C, 0.4 amp cm-2, 30 psig/30 psig, H2/Air – stoichiometric ratios 1.2/2)
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ACTIVITY TERM kcell
(from the GSSEM) OF  A SINGLE CELL

(Operated at 80°C, 0.4 amp cm-2, 30 psig/30 psig, H2/Air – stoichiometric ratios 1.2/2)
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RESISTANCE INCREASE CURVE 
OF A SINGLE CELL

(Operated at 80°C, 0.4 amp/cm2, 30 psig/30 psig, H2/Air – stoichiometric ratios 1.2/2)
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SIMULATION OF A SINGLE 
CELL USING THE GSSEDM
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RELIABILITY ANALYSIS

• Must account for stochastic behaviour of cells
• Includes a Degradation Model’, (durability) 

where ‘Failure’ is degradation to below 
threshold value for specific parameter (e.g.
voltage, efficiency, power) Catastrophic failure 
of the MEA 

• Goal of the analysis is to allow an 
understanding of the impact of design (e.g.
redundancy - increase loading of catalyst) and 
operation changes (e.g. limitation of operating 
states) on EOL performance
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RELIABILITY ANALYSIS

• Will require some type of ‘Degradation Model’, which 
allows reliability to be function of degradation 
evaluation (durability)

• ‘Failure’ is degradation to below threshold value for 
specific parameter (e.g. voltage, efficiency, power)

• Should account for stochastic behaviour of cells
• Catastrophic failure of the MEA 
• Goal of the analysis is to allow an understanding of the 

impact of design (e.g. redundancy - increase weight of catalyst)
and operation changes (e.g. limitation of operating states) on 
EOL performance
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STACK AGEING MODEL 
(100 CELLS – 100 cm2)
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MODELLING OF 
STOCHASTIC BEHAVIOUR

Simulation 100 Cell Stack
 50.56 cm2 Area,  3atmg, H2/Air SR 1.2/2
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OPERATION WITH MEA 
FAILURE AND RENEWAL

100 Cell Stack, 100 cm2, MTTF 6430 hours
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MTTF –
MEAN TIME TO FAILURE
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MEA 
RENEWAL VS NO RENEWAL
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RENEWAL RATE VARIATION
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VARIATION IN 
DEGRADATION RATES
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MAJOR CONTRIBUTIONS OF 
THIS WORK

• Identification of key failure modes 
associated with PEM fuel cells

• Development of GSSEDM, modelling the 
performance of a cell with operating age 

• Develop a conceptual model for fuel cell 
stack reliability.
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QUESTIONS
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Measurement Error

0.15 psig0.5% of full 
scale*

TransducerPressure

0.1°C0.1°C (calibrated)Thermal CoupleTemperature

0.05mVVoltage

.025 Amps or

.0005 Amps cm-2

ShuntCurrent

0.05% of spanNational 
Instruments 5B30

Signal Processing

1.5 cc min-1 anode 
5 cc min-1 cathode

1.5% of full scaleAalborg GFM 171Flow Meters

1.5 cc min-1 anode 
5 cc min-1 cathode

1.5% of full scaleCole PalmerFlow Controllers

0.06 mohms2% of full scale
3 mohm

HP 4328AResistance

Measurement 
Error

Stated ErrorDeviceFunction
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• intrinsic reactivity (thermodynamic, chemical 
and physical instability), including material corrosion 
and degradation

• manufacturing irregularities and design 
flaws

• reactant contaminants (including those 
contaminants that may leach from the reactant storage 
and delivery systems)

• abusive handling
• defect propagation

DETERIORATION  CAN 
NOT BE AVOIDED
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Instrument Error
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• proposed ageing rate (kDR) of is -0.055 µV/hr

• –0.0007 hr-1 for λDR

• term related to the loss of mass transport of reactants 
(not developed in this work)

AGEING PARAMETERS

Age??? DRage ×+= o
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LOSS OF APPARENT 
CATALYTIC ACTIVITY

• Catalyst sintering (catalyst migration or ripening)
• Loss of catalytic or electrolyte material
• Low levels of contaminants binding to active sites

• Contaminants from reactants (including dust)
• Contaminants leached from fuel cell components

• Poor water management may contribute to 
effectiveness of catalytic sites (flooding and 
dehydration) or simply the presence of liquid water

• Degradation of Nafion in contact with active sites
• Carbon Corrosion
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Stack Ageing - Kinetic Loss
Single Cell 
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LOSS OF CONDUCTIVITY

• Low levels of cation contamination reducing the 
proton conductivity (this cause may be accelerated 
by high hydration levels as the water acts as a 
source and pathway for contaminates)

• Changes to eletro-osmotic drag properties 
• Changes to the water diffusion characteristics of the 

membrane
• Corrosion of the plates leading to increased contact 

resistance
• Thermal or hydration cycling leading to mechanical 

stress cycling resulting in delamination of the 
polymer membrane and catalyst



Michael Fowler – University of Waterloo

Stack Ageing- 
Loss of Conductivity
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LOSS OF 
MASS TRANSFER RATE

• Swelling of polymer materials in the active 
catalyst layer changing water removal 
characteristics

• Compaction of the gas diffusion layer due to 
mechanical stresses

• Surface chemistry changes in the gas 
diffusion layer making water removal more 
difficult 

• Carbon Corrosion
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Stack Ageing -
Mass Transport Loss
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RELIABILITY BLOCK DIAGRAM


