

- A 100 cm² active area PEM fuel cell must be designed and built.
- The project objective is to design and build a fuel cell that is fully functional and not necessarily fully optimal.

The Design Purpose

To equip UW undergraduate engineering students with:

- Education
- Experience
- Employment

The Design Process

Design Constraints

- Built at University of Waterloo
- Cost of less than \$2600 USD + MEA
- 100 cm² active area MEA
- Maintained at 80°C
- Should not operate > 100°C
- Form of alignment
- Durable

Deliverables: Exploded view

Design Approach

- 1. Optimize each individual sub-design within the fuel cell
- 2. Analyze the compatibility of sub-designs:
 - Will it function?
 - Cost
 - Flow characteristics
 - Thermal compatibility and compressibility
 - Pressure loss
- 3. If incompatible, go back to (1) and determine where a suitable compromise can be made
- 4. If fully compatible, final design is completed

SHAPE & SIZE

- Constrained by 10 cm x 10 cm active area
- Use typical square shape
- Use minimal amount of material
 - Cost
 - Contact pressure
- Make 17 cm x 17 cm overall cell

SHAPE & SIZE

END CAP

END CAP

Aluminum or Stainless Steel

Criteria:

- Structurally stable
- Ease of fabrication
- Low cost
- Suitable size and thickness

END CAP

Aluminum

 $17 \text{ cm } \times 17 \text{ cm } \times 1.25'' = \$27-\$30$

304 Stainless steel 17 cm x 17 cm x 1.25" = \$26 Purchased outside of school

CURRENT COLLECTORS

CURRENT COLLECTORS

Copper, Brass, or Gold-plated S.S.

Criteria:

- High conductivity
- Ease of manufacture
- Ease of building a connector
- Low cost

Electrical Conductivity

Material:

Electrical Conductivity (% IACS)

Aluminum alloys (68-212°F)

300 stainless steels (32-212°F)

Brass

Graphite

Copper (68-572°F)

27 – 61%

2.3 - 2.5%

12 - 37%

0.22%

100%

Cost → approx. \$100 for brass, copper

FLOW FIELD PLATES

FLOW FIELD PLATES

Graphite, Stainless Steel, or Coated S.S.

Criteria:

- High conductivity
- Impermeable
- Suitable thickness
- Suitable size

- Machinability
- Corrosion-resistant
- Low cost
- Ease of fabrication
- Distribution of reactants

FLOW FIELD PLATES

FLOW FIELD CHANNELS

- Increasing # channels → increases pressure loss
- Flow channels too wide -> GDL swells and blocks flow
- Flow channels too deep → inefficient
- Optimize? → Through experiments

FLOW FIELD CHANNELS

- E. Hontanon from Madrid, Spain
 - "Fuel consumption increases when decreasing the width"
 - "Channels narrower than 1 mm are not viable in practice"
- Watkins et al.
 - "Optimum width for ridges and gas channels ranges are from 0.89-1.4 mm and from 1.14-1.4 mm, respectively, and the optimum depth for gas channels is between 1.02-2.04 mm"
- Test cell in lab uses 1 mm x 1 mm
- Professor X. Li
 - "It will work."

FLOW FIELD CHANNELS

Flooding Not Required

```
Half Reaction: H_2 \rightarrow 2H^+ + 2e^-

For an 83.3% utilization rate of hydrogen (stoichiometric ratio of 1.2:1): (using Faraday's, since 1 A = 1 C/s)

n_{H2} = (100.0 \text{ A})(1 \text{ coulomb/sec})(1 \text{ equivalence of e})(1 \text{ g mol H}_2)(100 \text{ g mol H}_2 \text{ supplied}) = 6.22 \text{ E-4 g mol H}_2

(1 \text{ A})(96,487 \text{ coulombs})(2 \text{ equiv. of e})(83.3 \text{ g mol H}_2 \text{ consumed})

sec

m_{H2} = (6.22 \text{ E-4 g mol H}_2)(2.0158 \text{ g})(1 \text{ kg}) = 1.25 \text{ E-6 kg H}_2

sec

(1 \text{ g mol H}_2)(1000 \text{ g})

sec

For a 50% utilization rate of oxygen (stoichiometric ratio 2:1):
```

 $m_{air} = (2.99 \text{ E-3 } \underline{\text{g mol}} \text{ wet air})(\underline{28.74 \text{ g}})(\underline{1 \text{ kg}}) = 8.60 \text{ E-5 } \underline{\text{kg}} \text{ air}$

(1 g mol wet air)(1000 g)

FLOW FIELD INLET (A)

FLOW FIELD INLET (B) & (C)

FLOW FIELD INLET (D)

Force on the membrane

Anode side $F = m'_{H2} V = (1.25 \text{ E-6 kg/s})(0.64 \text{ m/s}) = 8.00 \text{ E-7 N}$

Cathode side $F = m'_{air} v = (8.60 \text{ E-5 kg/s})(3.06 \text{ m/s}) = 2.63 \text{ E-4 N}$

Anode side $F / [\pi(D/4)^2] = (8.00 E-7 N)/(28.27 mm^2) = 2.80 E-8 N/mm^2$

Cathode side $F / [\pi(D/4)^2] = (2.63 E-4 N)/(28.27 mm^2) = 9.30 E-6 N/mm^2$

The tear strength of Teflon is 29-39 N/mm² at 23°C and 14-20 N/mm² at 150°C.

Therefore, it can be assumed that the MEA can more than adequately resist the force on it.

Maintaining the cell at 80°C

 $\Delta G_{\text{max}} = nFE^{\circ} = (2 \text{ electrons } / 1 \text{ mol H}_2)((96,487 \text{ C})(1.229 \text{ V})$ = 237,165 J/mol H₂

Heat produced

```
\Delta G_{actual}
= (1 - ?) \Delta G_{max}
= nF(E° - E<sub>actual</sub>)
= (2 electrons / 1 mol H<sub>2</sub>)(96,487 C)[1.229 V - (0.83)(0.6 V)]
= 141,064 J/mol H<sub>2</sub>

q_{gen} = \Delta G_{actual} (6.22 E-4 mol H<sub>2</sub>/s) = 87.7 J/s = 87.7 W

q'' = q / A = (87.7 \text{ W}) / (0.01 \text{ m}^2) = 8,770 \text{ W/m}^2
```

Assuming perfect insulation

Approximate Temperature Drop

$$CJ''_1 = U \Delta T = U(T_1 - T_4)$$

$$U = 1 / (R_{tot} A)$$

- = 1 / $(L_{graphite}/k_{graphite} + L_{brass}/k_{brass} + L_{AI}/k_{AI} + R''_{t,c1} + R''_{t,c2} + R''_{t,c3})$ = 1 / [(0.03175m)/(80 W/m.K) + (0.00635m)/(127 W/m.K) + (0.00635m)/(181 W/m.K) + 0.72 E-4 m².K/W + 0.02 E-4 m².K/W + 0.08 E- $\dot{4}$ m².K/W]
- $= 1,773.2 \text{ W/m}^2.\text{K}$

Thus,
$$T_4 = T_1 - (q''_1 / U)$$

= 80.0°C - (8,770 W/m²) / (1,773.2 W/m².K)
= 75.1°C

Heat Required

$$c_{\text{loss, conv}} = 2 h_{\text{air}}(T_s - T_{\text{surr}}) = 2 (100 \text{ W/m}^2.\text{K})(80^{\circ}\text{C} - 25^{\circ}\text{C})$$

= 11,000 W/m²

Heat required = Heat loss – Heat generation $q''_{req'd} = 11,000 \text{ W/m}^2 - 8,770 \text{ W/m}^2 \\ = 2,230 \text{ W/m}^2 \\ q_{req'd} = q'' \text{ A} = (2,230 \text{ W/m}^2)(0.0196 \text{ m}^2) = 43.7 \text{ W}$

ANALYSIS

Thermal Compatibility

Material:

Aluminum alloys (68-212°F)

300 stainless steels (32-212°F)

Brass

Graphite

Copper (68-572°F)

a (1/°C)

 $22.3 - 24.1 (x 10^{-6})$

 $14.9 - 18.7 (x 10^{-6})$

19.0 (x 10⁻⁶)

 $7.0 - 8.8 (x 10^{-6})$

 $16.7 - 17.6 (x 10^{-6})$

Reducing area of CCs and FF plates

- System under 30 psi of pressure
- Metals possess good compressive strength
- Graphite possesses ample compressive strength of 7,151 psi to 11,020 psi

Laminar Flow in Flow Field Inlets

Flow through Flow Field Channels

$$Q = V_1 A_1 = V_2 A_2$$

 $Re_{H2} = (0.06924 \text{ kg/m}^3)(18.10 \text{ m/s})(0.012 \text{ m}) / (98.8 \text{ E-7 N.s/m}^2)$

= 1,522.2

 $Re_{air} = (0.9950 \text{ kg/m}^3)(86.51 \text{ m/s})(0.012 \text{ m}) / (208.2 \text{ E-7 N.s/m}^2)$

= 49,612.4

Taking into account an average of fuel consumption:

 $Re_{H2} = 1.827$

 $Re_{air} = 37,209$

Acceptable Pressure Losses

```
P_1 + \frac{1}{2} ? v_1^2 + ? g z_1 = P_2 + \frac{1}{2} ? v_2^2 + ? g z_2 + Sh_L

? P_{anode} = \frac{1}{2} ? (v_2^2 - v_1^2) + Sh_L

= 11.34 Pa + 22,271.00 Pa

= 22.28 kPa = 7.8% P<sub>1</sub>
```

$$?P_{cathode} = \frac{1}{2} ?(v_2^2 - v_1^2) + Sh_L$$

= 4.83 Pa + 25,359.17 Pa
= 25.36 kPa = 8.9% P₁

SEALING & COMPRESSION

Suitable bolts and pressure

- Prevent leakage
- Minimize contact resistance
- Maximize electrical conductivity
- Maximize reactant diffusion
- Uniform distribution of pressure
- Optimize pressure through experiments

Bolt Torque

Aluminum End Caps = \$60

Miscellaneous costs ~ \$100

- Gasket
- Hardware
- Swagelok
- Insulation

Copper Current Collectors = \$160

Graphite plates = \$212

MEA and GDL = \$1200

Thank you. Questions?

