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BALANCE OF PLANT
RELIABITLY' o e mogem

L iteratureindicatesthat balance of plant isthe
most significant issuefor fuel cell reliability at thistime.

Electrical,
Electronic M echanical
Printed Wiring components
Boards \ Pp
Switch Gears ll:.lamngs
Vaves

Miscellaneous Heat Exchangers

Sensors
Site Procedures

Quality

Datafor a‘fleet’ of 36 DoD PAFCs
BOP reliability smply an issue of:
engineering commitment, quality control and cost.
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BALANCE OF PLANT

* Pumps, Compressor/Expanders, Burners,
Heat Exchangers, Condensers,
Vaporisers, transfor mer/inverter, piping
& connectors, switches, monitors, control
systems (software), control strategy

* Power Conditioner (94-98% efficiency)
* Fued Storage and Handling
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FUEL PROCESSING
-_ OYSIEM

e Materials and Containment |ssues

* Deactivation of Reformer Catalyst (cwzno/al0,)
(physical causes, poisoning by impurities, poisoning by reactants or products)

* Chlorides, Arsenic
* Sulphur (can be ‘leached out of seals’)
e Carbon (‘Coking) DepOSitiOn (function of Steam/Carbon

ratio)

* Thermal Damage
* Sintering (Catalyst Deactivation)
* Dew Point Concern
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RELIABILITY JARGON

* Durability - ability to resist permanent changein
performance over time, i.e. degradation Or
Irreversible degradation. Thisphenomenais
related to ageing.

* Reliability - The ability of an item to perform the

required function, under stated conditions, for a period
of time. Combination of degradation, and failure modes
that lead to catastrophic failure.

e Stability - recoverable function of efficiency, voltage or
current density decay or reversible degradation.
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PEM FUEL CELL SYSTEM

Fuel: Natural Gas,
Synthesis gas,
landfill gas,
distillate, methanal,

prop
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FMEA OF A FUEL CELL

* Plate
— Cracking
— Scorching
— Corrosion / Pacification

— Changein the Plate which will impact the MEA
* Dimensional changes (war ping, erosion, misalignment)
e Contamination or debrisreleased

* Seal Fallure

°* MEA

— Pinhole Formation
— Shorting
— Degradation of Voltage
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VOLTAGE DEGRADATION CURVE

FOR A SINGLE PEM CELL

(Operated at 80°C, 0.4 amp/cm2, 30 psig/30 psig, H2/Air — stoichiometric ratios 1.2/2)

Voltage (Volts)

0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

¢
»* W ’0#00 *0 04
0 200 400 600 800 1000 1200
Age(Hours)

Michael Fowler —University of Waterloo - Presentation for ME 751




VOLTAGE DEGRADATION

* Voltage Degradation will be the main factor
governing the‘life’ of the stack itself (i.e. time
In service, performance and reliability at end of
life)

* Degradation must be accommodated for in
control systems

* Will beimportant in Life Cycle Analysis
(especially the Life Cycle Costing)

Michael Fowler —University of Waterloo - Presentation for ME 751



DEGRADATION FAILURE MODES

(leading to degradation of performance or durability)

- Kinetic or activation lossin the anode or
cathode catalyst —

L oss of Apparent Catalytic Activity

- Ohmic or resistiveincreasesin the
membrane or other components—

L oss of Conductivity

- Decrease in the masstransfer rate of In
the reactants flow channdl or eectrode —

L oss of Mass Transfer Rate of Reactants
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LOSS OF APPARENT
CATALYTICACTIVITY

- Catalyst sintering (catalyst migration or ripening)
- Lossof catalytic or electrolyte material

- Low levels of contaminants binding to active sites
- Contaminants from reactants (including dust)

- Contaminants leached from fuel cell components

- Poor water management may contributeto
mechanisms (flooding and dehydration) or simply
the presence of liquid water

- Degradation of Nafion in contact with active sites

. Carbon Corrosion
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LOSS OF CONDUCTIVITY

- Low levels of cation contamination reducing the
proton conductivity (this cause may be accelerated
by high hydration levelsasthe water actsasa
sour ce and pathway for contaminates)

- Changesto eletro-osmotic drag properties

- Changesto thewater diffusion characteristics of the
membrane

- Corrosion of the plates |eading to increased contact
resistance

- Thermal or hydration cycling leading to mechanical
stress cycling resulting in delamination of the
polymer membrane and catalyst
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LOSS OF
MASS TRANSFER RATE

- Swelling of polymer materialsin the active
catalyst layer changing water removal
characteristics

- Compaction of the gasdiffusion layer dueto
mechanical stresses

- Surface chemistry changesin the gas
diffusion layer making water removal more
difficult

. Carbon Corrosion
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ACTIVITY TERM k_,

(from the GSSEM) OF A SINGLE CELL

(Operated at 80°C, 0.4 amp/cm2, 30 psig/30 psig, H2/Air — stoichiometric ratios 1.2/2)
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RESISTANCE INCREASE IN A

SINGLE CELL
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SIMULATION OF A SINGLE CELL
USING THE GSSEM

X
2

-

o
(00]
&3

&

Power (Watts)
5
5

o
D
S

Potential (Volt)
o
(@)]

o
N
=

ol

o
o

0O 02 04 06 08 1 12
Current Density (Amplcm?2)

Michael Fowler —University of Waterloo - Presentation for ME 751



MEA ANALYSISMETHODS

 DMTA
— Mechanical behaviour, stress-strain curves
— Hydrated studies are possible
— Identification of thermal transitions
e DSC
— Crystallinity changes
— Mélting point
* SEM
— Porosity
— Agglomerate Structure
— Dimensions and cross sections
— Delaminaiton
— Composition and element migration
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Porosity

Mag= 3000KX WD= 10mm  Date:250ct2002 Time :13:12:00
EHT= 5.00 kY Signal A=8E2  System Vacuum = 8.95¢-007 mBar

Using SEM images and image analysis tools the surface porosity of this lon
Power MEA can be determined. We can also determine if porosity is
changing over time and to what degree.
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Agglomerate Structure

View of the three
phase structure of
the catalyst layer.

We can see the
carbon particles
(which are
supporting the
platinum catalyst)
mixed with the
Nafion.

Width =2.032 pm 100nm Mag=10000KX WD= 10mm  Date :25Oct2002 Time :13:01:50
File Name = lon P used 38 SE2.tif |_| EHT = 5.00 kV Signal A=SE2 System Vacuum = 9.49e¢.007 mBar
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Dimensions and Cross Sections

Cross section — freeze fractured

Width = 169.3 ym 10um Mag= 120KX  WD= 14mm Date 3
File Name = lon power 4 (RBS)tf ——] EHT=1500kv  Signal A=RRBSD Syster

ETEK cross section — Cut =

Width = 2.032 mm 100pm Mag= 100 X WD= 9mm Date :9 Oct2002  Time :12:07:32

File Name = Etek 26 (RBS).tif |—| EHT =15.00 kv Signal A=RBSD System Vacuum = 1.18e-006 mBar
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Delamination

-
: 8
[ 2.6

-

Width=135.5 um 10pm Mag= 150K X WD= 9mm Date :25 Oct2002 Time :14:11:26
File Name = lon P used 67 RBS.tif |—| EHT = 5.00 kV Signal A=SE2 System Vacuum =7.72e007 mBar

Using the SEM we can determine the degree of delamination as seen in
this Sample.
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Compositional Analysis

Using the X-ray analysis tools
on the SEM we can examine
the composition of the
materials like this lon Power
membrane.

We can determine if metallic
bipolar plates are leaching ions
onto the MEA.
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Sr. A N | R ) [Pl
Width =2.032 mm Mag= 100X WD= 8mm Date :25 Oct 2002 Time :15:48:39
File Mame = GDL 99 SE2.tif EHT = 5.00 kv Signal A=SE2 System Vacuum = 6.41e007 mBar

27/ TR '

As the GDL is used the Teflon coating may degrade and be washed away.
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E OBJECTIVE ISDESIGN IMPROVEMENT
WITH RELIABILITY ANALYSIS

* Must account for stochastic behaviour of cells

* |Includesa Degradation Model’, (durability)
where ‘Failure’ isdegradation to below
threshold value for specific parameter (e.g.

voltage, efficiency, power) Catastrophic failure
of the MEA

* Goal of theanalysisisto allow an
under standing of the impact of design (e.g.
redundancy - increase loading of catalyst) and
operation changes (e.g. limitation of operating
states) on EOL performance
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PERFORMANCE MEASURES OF A

FUEL CELL STACK

Mean Timeto Failure (function of reliability and decay rate)

— Power Capacity - kw net electrical output
(Durability - <5% power degradation)

— Fuel Efficiency - % based on LHV of fuel
(60% at ‘25% peak power’, and 48% at peak power)

— Minimum Voltage Output - volts
— ‘System’ dominated parameters
e Response Time -% power increase per minute from idle

(Emission Targets-)
+ (specific target values for particulate, VOC, SO,, NO,, CO,)

— Voltage Deviation

Voltage Decay Rate- no higher than a number of Voltshour of
operation (used asan indicator of life cycle)

Increasein the Standard Deviation of the Voltage
Appearance of ‘instability’ or Outlinersin performance
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Voltage Performance at End of Life

Voltage (Volts at 0.4 Amps/cny)
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STACK AGEING MODEL
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start

end

RELIABILITY BLOCK DIAGRAM
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OPERATION WITH MEA
FAILURE AND RENEWAL
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Voltage (voltsat lamp cm”)

RENEWAL RATE VARIATION
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IMPROVING COMPONENT
EFFECTIVENESSIN DESIGN

Redundancy (e.g. increase weight of catalyst)
| ncrease the robustness of key components
Mechanical & Thermal integration

Reduce M aterial flows

Material Compatibility (especially replacement
parts)

Modularity / Commonality
Strong QA/QC program
Consistency in manufacturing
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IMPROVING COMPONENT
EFFECTIVENESS DURING OPERATION

* Limited by the ‘built-in’ Reliability / Performance
* Control System & Strategy improvements
— Reduced cycling & operating states
— Operation at less stressful conditions, e.g. operating voltage

— Reduced variation of: temperature - pressure - fuel utilization
— Pressure Balance acr oss membrane

— Improved water management
* QOperator / Maintenance Training

* Maintenance Planing/Program (e.g. stocking of spar es,
strong PM program)

* Consderation of Reliability Centered Maintenance
(RCM)

* Management System (records, corrective action system,
procedur es)

Michael Fowler —University of Waterloo - Presentation for ME 751



ACHIEVING
RELIABILITY GROWTH

Operational Models

Reliability Models/ Projections

Reliability Data Collection

Review/Correlation of Reliability& Operational Data
Performance Testing Program

Continuous Operation vs. ‘Stress’ Testing Program
(i.,e. HALT, HASS testing)

Life Cycle Analysisand Planning

Constant communication with design and
manufacturing teams
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QUESTIONS
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RESEARCH INTERESTS

Operating a Fuel Cell Test Station now
Reliability of PEM Fuel Cells/Stacks

— Traditional FMEA

— Cdl/Stack degradation modelling

— Systems reliability/availability models

— Failure Diagnostics/Accelerated Testing
Modelling of PEM Fuel Cells (and SOFC)

Life Cycle Analysis of PEM Stacksand Systems

Reliability of Polymeric Materialsin PEM Fuel
Cells

Reliability and M odelling of PEM fuel cell
systems linked to hydrogen generation systems
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Potential
Failure Mode and Effects Analysis
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RELIABILITY BLOCK DIAGRAM
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FAULT TREE ANALYSIS(FTA)

< Voltage Degradation >

Decrease of Mass Transfer

Decrease of Catalyst Activity

/\

Increasein Membrane Resistance

Polymer Degradation

Déelamination
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Age

Thermal Event

> O O

Contamination Thermal Event {ydration Cycling
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SIX PATTERNS OF FAILURE

(Ref: Moubay, RCM)

B: Slowly increasing rate
leading to wear-out

A: Bath-tub curve—
infant mortality and wear -out

C: Slowly increasing D: L ow failure when new with rapid
failurerate increase to constant failurerate

E- Constant failurerate F: High infant to slowly increasing
(random failure)
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VARIATION IN
DEGRADATION RATES
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Short Courses

Both Taken and Taught

Spill Control and Hazardous Material Management
Environmental Impact Assessment

Environmental Auditing and Environmental Law
1SO 14,000 (EMS)

Storage Tank Management

Contaminated Site Assessment & Risk Assessment

Other Courses

Process Hazard Analysis/Reliability
Environmental Business Case Devel opment
Officer Professional Development Program (Honours)
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Current Engineering Options
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SELECTED CAUSEY
MECHANISMS OF THE FAILURE MODES

Defect Propagation (leading to pinholes or shorting)
L oad stress and/or load cycling

Thermal stress and/or thermal cycling

Pressure stress and/or pressure cycling
Hydration Cycling

Start/stop cycling

Reactant shortage

Reactant flow configuration

Uniformity of cell design and assembly
Contaminants from reactants
Contaminants|eached from fuel cell components
Degradation of electrode or electrolyte materials
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DETERIORATION CAN
NOT BE AVOIDED

* Intrinsic reactivity (thermodynamic, chemical
and physical instability), including material corrosion
and degradation

* manufacturingirregularitiesand design
flaws

* reactant contaminants (including those
contaminantsthat may leach from thereactant storage
and delivery systems)

* abusive handling
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MEMBRANE ELECTRODE ASSEMBLY
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L OSS OF APPARENT
CATALYTICACTIVITY
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LOSS OF CONDUCTIVITY
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SINGLE CELL DEGRADATION

H,/O, 30 psig/30psig 80°C
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SINGLE CELL DEGRADATION

H,/AIR 30 psig/30psig 80°C

600 frour Data
SR 1.15/3
lambda 12.3

Epsilon2 .00303

AN
N
600 hour Data
SR 1.15/2.0 A \‘A

lambda 14.4
Epsilon2 0.00301 A\

x

\

N

A

600 hour data

High stoic ratio - 600 hour data BOL Data

200 400 600

Current Density (mA/cm?)

Michael Fowler —University of Waterloo - Presentation for ME 751




L OSS OF APPARENT
CATALYTICACTIVITY
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VOLTAGE DEGRADATION

CURVE FOR A SINGLE PEM CELL

Voltage (Volts)
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RELIABILITY OF
FUEL CELL STACKS

* High Reliability - no moving parts, modular design, no high
mechanical stresses, few extreme oper ating conditions

* PEM stacks pass shock, vibration and angle tests

* Lossof integrity isaconcern (physical damage, leaks,
freezing of stack, or failure of compression system)
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RELIABILITY OF
FUEL CELL STACKS

Little attention to ‘cycling’ in theliterature

Stack Balance of Plant failures- e.g. cooling system
fallures, water treatment system failures, sensors,
control system

Maintenance Time, Stability I ssuesand Testing will
effect availability, but little data isavailable and thisis
not the focus of the research
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MEMBRANE ELECTRODE
ASSEMBLY (MEA)

* Beyond burn-in period reliability ishigh (quality
control issue)
* MembranelIntegrity (cross-over concern)

— differential pressure

— ‘cycling’ (thermal, pressure, hydration) will lead to mechanical
Stresses

— thermal damage (heat or freezing)
* Electrode compaction/degradation
* Degradation of performanceisprincipal failure‘effect’
STABILITY ISSUES

* Contamination/Poisoning (will result in voltagereversible
degradation or longterm irreversible degradation)

* Flooding or Dehydration
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OBJECTIVESOF THE
RESEARCH

* Further the application of a generalized PEM
model (GSSEM)

* |ncorporate ‘degradation’ into the PEM model

* Study thereliability and degradation in a
context of PEM FC design and oper ation

— developing an understanding and framework
for PEM component effectiveness
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DEGRADATION FAILURE MODES

(leading to degradation of performance or durability)

Kinetic or activation lossin the anode or cathode
catalyst

Ohmic or resistive increasesin the membrane or other
components
Changesto eetro-osmotic drag properties

Changesto the water diffusion characteristics of the
membrane

Decrease in masstransfer ratein thereactant flow
channel or electrode

Degradation of masstransfer rate of water in the cathode
electrode
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DEGRADATION FAILURE MODES

(leading to degradation of performance or durability)

* Lossof reformatetolerance of the catalyst

- Delamination of the membrane from the
electrode

- Degradation of the electrode material that can
either change the masstransport properties, or
release material that can contaminate the
membrane material

* Mechanical function loss or loss of integrity of
the membrane or stack seals (efficiency 10ss)
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CAUSESMECHANISMSOF THE
DEGRADATION FAILURES MODES

(i.e. something that can be controlled)

Contaminants from reactants (including dust)

Contaminantsleached from fuel cell
components

Degradation of electrode or electrolyte
materials

Poor water management (flooding and
dehydration) or ssmply the presence of liquid
water

Catalyst migration or ripening
L oss of catalytic or electrolyte material
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CAUSESMECHANISMSOF THE
FAILURES MODES e

L oad stress and/or load cycling

Thermal stress and/or thermal cycling
(including freezing)

Pressure stress and/or pressure cycling
Start/stop cycling

Uniformity of cell design and assembly
Reactant shortage

Reactant flow configuration

Michael Fowler —University of Waterloo - Presentation for ME 751



AGEING MODEL FOR THE FUEL
CELL STACK

* Based on the Generalized Steady State Electrochemical
Model (thus - Generalized Steady State
Electrochemical Degradation M odel)

(Ageing Model and Degradation Model jargon still used interchangeably)

* Largely mechanistic, but includes some empirical
terms/expressions

* Currently limited to Nafion membranes, Pt catalyst
* Different life parametersthat may be considered:

— time-in-service, time-on-shelf, total energy output,
start/stop cycles, load cycles, hydration events
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PEM MODEL DEVELOPMENT

V + h

ca - E

Nernst

Ererng=122985 10%(T-20815+4308 10° (In py, +%In p; )

_1

act, c

a

C

h - 1036:40° DG, +8.6240° 12863+ In A +Inkg+(1-a Jinc, - In |)]

DGec RT
act, a 2F
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TOTAL ACTIVATION

OVERVOLTAGE

Moo =X, X, XT +X, XT [IN(cy )] +X, XT[IN(i)]
. _.DG, DG,
' 2F a,nF

X2:

e e B R S Pk

C

X, =Ky +0.0001974n A+4.3" 10° A{n CHZ
. _R@-a.) &R, RO
> anF gzlr a.nF 5
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TOTAL OHMIC OVERVOLTAGE
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AGEING PARAMETERS

X, =Kpr " AQElT + Ky +0.000197 ¥n A+4.3" 10°Anc;,

* proposed ageingrate (kpg) of is-10 mvV/nrK

| =1 +1_.  Age

ag

* —0.0015 hr-ifor | H representsapproximately a 10
percent degradation isvoltage (at atypical operating
level) over 5,000 hours

* termrelated totheloss of masstransport of reactants
(not yet included)
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MARK IV DEGRADATION

H,/O, 30 psig/30psig 80°C
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USES OF THE AGEING/
DEGRADATION MODEL

Tool to be used in Fuel Cell Stack and System M odelling
Diagnosisof MEA and/or Stack design changes
Proj ection of performance throughout desired life

Tool to be used with testing programs (will allow for
shorter testing periods)

Tool for development and testing of Control Systems
and Control Strategies

Estimation of reliability throughout desired life period
Tool to be used with areliability growth program

Tool for comparison of the Component Effectiveness of
different Stacks
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COMPONENT
EFFECTIVENESS

* The probability that the component can
successfully meet operational demand within a
given time when operated under specific

conditions.

— Technical performance (capability, operation parameters)

— Efficiency (range, endurance)

— Size/Weight

— Rdliability (i.e. durability, availability, stability, dependability)

— Safety

— Life

— LifeCycle Costs (life cycle costs can be traded off with stack
design & operational decisions)
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RELIABILITY ANALYSIS

Function of degradation evaluation, i.e. to below a
certain level of Component effectiveness (durability)

Degradation to below threshold value for specific
parameter (durability)

Catastrophic failure of the MEA or plate (cracking or
smudging)
Lossof Integrity leading to safety hazard

Goal of theanalysisisto allow an understanding of the
Impact of design (eg. redundancy - increase weight of catalyst)
and operation changes (eg. limitation of operating states) on
EOL performance
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UNIQUENESS OF THE
RESEARCH

* |ncorporation of degradation factorsin PEM modelling
to predict EOL performance has not yet been done
(GSSEDM isunique)

* PEM Stacksarereatively novel and not yet fully
commercialized

* Discussion of ‘Component Effectiveness parameters
for PEM fuel cellsislimited (and will vary depending on the
application)

* Rdiability analysisfor PEM Stacksisunique

* Useof mechanistic and degradation modelling in
reliability analysisis novel
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Modelling Fuel Cell Performance as
Stochastic Process

* Variation in behaviour can be attributed to
experimental error (the stochastic component):

— environmental conditions;

— reactant flow and pressure fluctuations,

— varying rates of water accumulation;

— differencein MEA quality from one MEA to the next;

— differencesin the contact resistance between the cells;

— reactant conditions and quality (including contamination),;
— Instrumentation and measurement error; and,

— control set point error.

There will be some error associated with the inadequacy of model or lack of fit of the mode.
Note that a stack with alarge number of cells will compensate for the variability in
performance
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PEM Membrane Assembly
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MEA MATERIALS
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PEM FUEL CELL STACK




STACK DESIGN PARAMETERS

MEA active area

Aspect Ratio

Number of Cells

Plate Materials

Flow configuration

Gas Ddivery System

Cooling System (plate material, fluid choice)
Stack construction and clamping pressure
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MEA DESIGN PARAMETERS

* Membrane

— type of material (PFSA/perfluorosulfonic acid or Nafion)
— thickness
— reinforcement material

* Catalyst
— type
— dispersion
— amount
* Electrode
— typeof material
— thickness & density
— anti-wetting
* Impregnation material/method
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STACK OPERATING PARAMETERS

Temperature (Increaseswill result in...)
— increases stack efficiency

— heat may be of a better quality, system may be more thermally
matched

— water management may become a problem

— higher heat losses, sealing, thermal expansion and material corrosion
issues

Pressure (Increaseswill result in...)

— Increased stack efficiency, reduced heat lost, reduced piping

— increased paraditic load & higher capital costs

— more complexity, lessreliability, different material considerations
(corrosion)

Humidification
Stoichiometry (or Utilization)
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Model-Predicted Cell Voltage (V)
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PEM FUEL CELL
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Mode-Prediicted Cell Voltage (V)

PRESSURE INCREASES
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MARK IV DEGRADATION

H,/O, 30 psig/30psig 80°C
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MARK IV DEGRADATION
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Catalyst Deactivation

* Ageing or Sintering (Physical Deactivation)
— crystal agglomeration and growth

— Internal surface area of the catalyst and
supports are reduced through the narrowing or
closing of pores

* Poisoning (Chemical Deactivation)
* Coking (fouling - Chemical Deactivation)
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CATHODE CONTAMINATES

¢ SOZ (can be 5ppm in cities)
— dependent on oper ating conditions

* NH; and NO, ittieor noimpact, reversible)

* CO gmall reversible impact

* Salt Air not significant

* Battlefield Contaminantsare an issue
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ANODE CONTAMINANTS

10ppm CO (reversible)

Sulphur components

N, and CO, inert

CH, - relatively inert

Methanol, For maldehyde, Formic Acid,

Methyl-format (reversible performance
|0SS)

Metalswill damage the MEA
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OVERALL FUEL CELL
SYSTEM EFFICIENCY

* Thermal & Material Integration

— matching sub-system temper atures

— using the heat internally & efficient thermal transfer

— using the product steam/water

— Co-generation or Bottoming Cycle (turbine, space or water heater, chiller)

* Pressurization increase improves stack performance
— but requires energy, increased cost & reducesrdiability

* Temperatureincrease improves stack performance
— but reducesrédliability & increasescorrosion

* Fud Utilization and/or Flow Rate

— Air/fuel flow needed for water and thermal management
— fuel needed to heat thereformer

* Paradgtic Power Losses & Complexity must be
considered
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SYSTEM EFFICIENCY VS % RATED POWER
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PERFORMANCE MEASURES OF A
FUEL CELL STACK

* Performance targets over a 40,000 hour life-cycle, or 5,000 hours for automotive application
* Mean Timeto Failure (function of reliability and decay rate)
* Mean Time Between Forced Outages/Derating
(dominated by stability issues)
* QOverall Reiability/
— Power Capacity - kw net eectrical output
— Fue Efficiency - % based on LHV of fuel

— Minimum Voltage Output - volts
— ‘System’ dominated parameters
* Response Time - % power increase per minute from idle
e (Emission Targets-)
¢ (specific target valuesfor particulate, VOC, SO,, NO,, CO,)

* Voltage Decay Rate- no higher than a number of

Volts'hour of operation (used asan indicator of life cycle)
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SYSTEM EFFECTIVENESS

* The probability that the system can
successfully meet operational demand within a
given time when operated under specific

conditions.

— Technical performance (capability, operation parameters)

— Efficiency (range, endurance)

— Size/Weight

— Rdliability (i.e. durability, availability, stability, dependability)

— Safety

— Life

— LifeCycle Costs (life cycle costs can be traded off with stack
design & operational decisions)

Michael Fowler —University of Waterloo - Presentation for ME 751



Managing System Effectiveness

Complex trade-off between
stack efficiency, system
effectiveness and operating
parameters.

Reliability system will also depend
on selection of operating
parameters.

Reliability and System Effectiveness
can therefore be managed (and
monitored) through a control

strategy.
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PERFORMANCE MEASURES OF A
FUEL CELL STACK

* Performance targets over a 40,000 hour life-cycle, or 5,000 hours for automotive application
* Mean Timeto Failure (function of reliability and decay rate)
* Mean Time Between Forced Outages/Derating
(dominated by stability issues)
* QOverall Reiability/
— Power Capacity - kw net eectrical output
— Fue Efficiency - % based on LHV of fuel

— Minimum Voltage Output - volts
— ‘System’ dominated parameters
* Response Time - % power increase per minute from idle
e (Emission Targets-)
¢ (specific target valuesfor particulate, VOC, SO,, NO,, CO,)

* Voltage Decay Rate- no higher than a number of

Volts'hour of operation (used asan indicator of life cycle)
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BALANCE OF PLANT

* Pumps, Compressor/Expanders, Burners,
Heat Exchangers, Condensers,
Vaporisers, transfor mer/inverter, piping
& connectors, switches, monitors, control
systems (software), control strategy

* Power Conditioner (94-98% efficiency)
* Fued Storage and Handling

Michael Fowler —University of Waterloo - Presentation for ME 751



BALANCE OF PLANT
RELIABITLY' o e mogem

L iteratureindicatesthat balance of plant isthe
most significant issuefor fuel cell reliability at thistime.

Electrical,
Electronic M echanical
Printed Wiring components
Boards \ Pp
Switch Gears ll:.lamngs
Vaves

Miscellaneous Heat Exchangers

Sensors
Site Procedures

Quality

Datafor a‘fleet’ of 36 DoD PAFCs
BOP reliability smply an issue of:
engineering commitment, quality control and cost.

Michael Fowler —University of Waterloo - Presentation for ME 751



FUEL PROCESSING
-_ OYSIEM

e Materials and Containment |ssues

* Deactivation of Reformer Catalyst (cwzno/al0,)
(physical causes, poisoning by impurities, poisoning by reactants or products)

* Chlorides, Arsenic
* Sulphur (can be ‘leached out of seals’)
e Carbon (‘Coking) DepOSitiOn (function of Steam/Carbon

ratio)

* Thermal Damage
* Sintering (Catalyst Deactivation)
* Dew Point Concern
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Pseudo 1st Order Rate Constant
(moles/sec/bar/kg of catalyst)
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U.S. DoD FUEL CELL
DEMONSTRATION PROGRAM

* 30 PAFC - natural gasfuel célls

» Unadjusted Availability
— Model B Fleet 64%
— Model C Fleet 80%

* Reported as above 95% availability on
the manufacture sweb site

* from DoD presentation at Grove 1999
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Average Cell Voltage

*U.S. DoD Fudl Cell program
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LIFE CYCLE COSTING (LCC)

* The economic evaluation of the design conceptsas an
element of each product development / selection
process.

* ‘Total Cost of Ownership’: acquisition, fudl,
maintenance, disposal, waste disposal, environmental
Costs

* Four most common methodsfor such alife-cycle
economic assessment ar€;
— Total Cost Accounting
— Life-Cycle Costing
— Full Cost Accounting
— Environmental Life-Cycle Cost

* ‘Design for the Environment’ considersthe Environmental /
Economic impactsoccur over an entire product life-cycle
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Technical Framework for
Life Cycle Assessment

|nventory Analysis | mpact
-Material and Energy Acquisition Assessment
-Manufacturing -Ecological Health
-Use -Human Health
-Waste M anagement

-Resource Depletion

Goal
Definition
And
Scoping

Ref: SETAC

| mprovement
Assessment



LIFE CYCLE ANALY SIS
STEPS

1) Goal definition: thebasisand scope of the evaluation are
defined.

2) Inventory Analysis. createa processtreein which all
processes from raw material extraction through waste water
treatment are mapped out and connected, mass and ener gy
balances ar e closed, and emissions and raw material and energy

consumption areaccounted.

3) Impact Assessment: Environmental loading identified in the
Inventory aretrandated into environmental effects. The

environmental effects are grouped and weighted.

4) Improvement Assessment: Areasfor improvement are
Identified.
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LIFE CYCLE ANALYSIS/
ASSESSMENT (LCA)

* LCA isan assessment technique based on the cradle-to-

grave concept.

— evaluating the potential environmental and economic impacts
(LCC or Life Cycle Costing) of a product or service,

— considering such aspects as extracting and processing raw
materials, manufacturing, distribution, recycling, resource

consumption and waste management.
* Valuable decision-support tool

* Threewdl-documented and used methods for
environmental analysisare:

— Eco-Points method
— Environmental Priority System
— Eco-Indicator
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RELIAIBILITY JARGON

* Availability -
— % of a power sourcesfully operational hoursdivided by the
planned/expected hours
— ‘Availablée if all performance specifications ar e achievable

— Conditionally Available (Derated) if 30%-100% of
performance factor isachievable

— Not available - down time, maintenance periods
— Not in service, or cold stand-by time not included
— Mean Time Between Forced Outages (M TBFO)
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IMPROVING COMPONENT
EFFECTIVENESSIN DESIGN

Redundancy (e.g. increase weight of catalyst)
| ncrease the robustness of key components
Mechanical & Thermal integration

Reduce M aterial flows

Material Compatibility (especially replacement
parts)

Modularity / Commonality
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IMPROVING COMPONENT
EFFECTIVENESS DURING OPERATION

Limited by the ‘built-in’ Reliability / Perfor mance

Control System & Strategy improvements

— Reduced cycling & operating states

— Operation at less stressful conditions, e.g. operating voltage

— Reduced variation of: temperature - pressure - fuel utilization
— Pressure Balance across membrane

— Improved water management
Operator / Maintenance Training
Maintenance Planing (stocking of spares)

Consideration of Reliability Centred M aintenance
(RCM)

Management System (records, corrective action system,
procedur es)
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ACHIEVING
RELIABITIY GROWTH

Operation Models

Reliability M odels/ Projections

Reliability Data Collection

Review/Correlation of Reliability& Operational Data
Performance Testing Program

Continuous Operation vs. ‘Stress’ Testing Program
Life Cycle Analysis and Planning

Constant communication with design and
manufacturing teams
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Potential
Failure Mode and Effects Analysis
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RELIABILITY BLOCK DIAGRAM
(RBD)
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FAULT TREE ANALYSIS(FTA)

< Voltage Degradation >

Decrease of Mass Transfer

Decrease of Catalyst Activity

/\

Increasein Membrane Resistance

Polymer Degradation

Déelamination
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Age

Thermal Event
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Contamination Thermal Event {ydration Cycling
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SIX PATTERNS OF FAILURE

(Ref: Moubay, RCM)

B: Slowly increasing rate
leading to wear-out

A: Bath-tub curve—
infant mortality and wear -out

C: Slowly increasing D: L ow failure when new with rapid
failurerate increase to constant failurerate

E: Constant failurerate
(random failure)

F: High infant to lowly increasing




PROCESS &
CONTROL TEST

* Performance

— Maximum Capacity

— Minimum Power

— Load Change Rate (5% per minute)

— Emissions (noise, water, vibration - as per regulations)
* Reliability/Safety

— Operation Time

— Load Operation 30-100%

— Load Trip 30-100% to 0% (safety stop)

— Differential Pressure

* Operating Procedure
— Procedure Established Hot/Cold Start
— Cold Start
— Hot Start
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MY ACADEMIC INTEREST S

* Developing the concept of
Component Effectiveness of Fuel Cell Systems

* Development and Demonstration of a
Concurrent Engineering Technique -
Reliability / System Effectiveness M odelling

* |Integrating Systems M odelswith System
Effectiveness M odels

* LifeCycle Analysis/ Costing
— Environmental Life Cycle Analysis
— Life Cycle Engineering/ RCM
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MY INTERESTS

(part of an academic program at RMC)

Fuel Cell System Technology

Developing the concept of

Component Effectiveness of Fuel Cell Stacks
Reliability / Component Effectiveness Modelling

| ntegrating Systems M odels with Component
Effectiveness M odels

Life Cycle Analysis/ Costing
— Environmental Life Cycle Analysis
— LifeCycle Engineering/ RCM

Working with real systems (Stationary PEM, Marine PEM,
SOFC)

Concurrent Engineering
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Current Engineering Options
for Reliability M anagement

M adification can bedonein atha thesadk deson o contrd variablesto improverdiability and prdonglife
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pafomancefactarswithinafud odl over itslifecyde
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