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BALANCE OF PLANT 
RELIABITLY (for the DoD program)

Mechanical 
Components

Pumps
Fans

Valves
Heat Exchangers

Miscellaneous
Sensors

Site Procedures
Quality

Electrical, 
Electronic
Printed Wiring 

Boards
Switch Gears

Data for a ‘fleet’ of 36 DoD PAFCs

BOP reliability simply an issue of:
engineering commitment, quality control and cost.

•Literature indicates that balance of plant is the 
most significant issue for fuel cell reliability at this time.
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BALANCE OF PLANT

• Pumps, Compressor/Expanders, Burners, 
Heat Exchangers, Condensers, 
Vaporisers, transformer/inverter, piping 
& connectors, switches, monitors, control 
systems (software), control strategy

• Power Conditioner (94-98% efficiency)
• Fuel Storage and Handling
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FUEL PROCESSING 
SYSTEM

• Materials and Containment Issues

• Deactivation of Reformer Catalyst (Cu/ZnO/Al2O3)

(physical causes, poisoning by impurities, poisoning by reactants or products)

• Chlorides, Arsenic
• Sulphur (can be ‘leached out of seals’)
• Carbon (‘Coking’) Deposition (function of Steam/Carbon 

ratio)

• Thermal Damage
• Sintering (Catalyst Deactivation)
• Dew Point Concern
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RELIABILITY JARGON

• Durability - ability to resist permanent change in 
performance over time, i.e. degradation or 
irreversible degradation.  This phenomena is 
related to ageing.

• Reliability - The ability of an item to perform the 
required function, under stated conditions, for a period 
of time. Combination of degradation, and failure modes 
that lead to catastrophic failure.

• Stability - recoverable function of efficiency, voltage or 

current density decay or reversible degradation.
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PEM FUEL CELL SYSTEM

Exhaust

DC AC Power

Fuel: Natural Gas, 
Synthesis gas, 
landfill gas, 

distillate, methanol, 
propane

Fuel 
Processor 
and Gas 
Clean-up

Hydrogen 
Rich Gas

Water

Fuel Cell 
Stack

Power 
Conditioner

Co-generation
Heat

Exhaust

Energy

Air

Air
Exhaust
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FMEA OF A FUEL CELL

• Plate
– Cracking 
– Scorching 
– Corrosion / Pacification
– Change in the Plate which will impact the MEA

• Dimensional changes (warping, erosion, misalignment) 
• Contamination or debris released

• Seal Failure
• MEA

– Pinhole Formation
– Shorting 
– Degradation of Voltage
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Failure of the plate
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VOLTAGE DEGRADATION CURVE 
FOR A SINGLE PEM CELL

(Operated at 80°C, 0.4 amp/cm2, 30 psig/30 psig, H2/Air – stoichiometric ratios 1.2/2)
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VOLTAGE DEGRADATION

• Voltage Degradation will be the main factor 
governing the ‘life’ of the stack itself (i.e. time 
in service, performance and reliability at end of 
life)

• Degradation must be accommodated for in 
control systems

• Will be important in Life Cycle Analysis 
(especially the Life Cycle Costing)
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DEGRADATION FAILURE MODES  
(leading to degradation of performance or durability)

• Kinetic or activation loss in the anode or 
cathode catalyst –
Loss of Apparent Catalytic Activity

• Ohmic or resistive increases in the 
membrane or other components –
Loss of Conductivity

• Decrease in the mass transfer rate of in 
the reactants flow channel or electrode –
Loss of Mass Transfer Rate of Reactants
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VOLTAGE DEGRADATION 
MODES
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LOSS OF APPARENT 
CATALYTIC ACTIVITY

• Catalyst sintering (catalyst migration or ripening)
• Loss of catalytic or electrolyte material
• Low levels of contaminants binding to active sites

• Contaminants from reactants (including dust)
• Contaminants leached from fuel cell components

• Poor water management may contribute to 
mechanisms (flooding and dehydration) or simply 
the presence of liquid water

• Degradation of Nafion in contact with active sites
• Carbon Corrosion
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LOSS OF CONDUCTIVITY

• Low levels of cation contamination reducing the 
proton conductivity (this cause may be accelerated 
by high hydration levels as the water acts as a 
source and pathway for contaminates)

• Changes to eletro-osmotic drag properties 
• Changes to the water diffusion characteristics of the 

membrane
• Corrosion of the plates leading to increased contact 

resistance
• Thermal or hydration cycling leading to mechanical 

stress cycling resulting in delamination of the 
polymer membrane and catalyst
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LOSS OF 
MASS TRANSFER RATE

• Swelling of polymer materials in the active 
catalyst layer changing water removal 
characteristics

• Compaction of the gas diffusion layer due to 
mechanical stresses

• Surface chemistry changes in the gas 
diffusion layer making water removal more 
difficult 

• Carbon Corrosion
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ACTIVITY TERM kcell
(from the GSSEM) OF  A SINGLE CELL

(Operated at 80°C, 0.4 amp/cm2, 30 psig/30 psig, H2/Air – stoichiometric ratios 1.2/2)
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RESISTANCE INCREASE IN A 
SINGLE CELL
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SIMULATION OF A SINGLE CELL 
USING THE GSSEM
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MEA ANALYSIS METHODS
• DMTA

– Mechanical behaviour, stress-strain curves
– Hydrated studies are possible
– Identification of thermal transitions

• DSC
– Crystallinity changes 
– Melting point

• SEM
– Porosity
– Agglomerate Structure
– Dimensions and cross sections
– Delaminaiton
– Composition and element migration
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Porosity

Using SEM images and image analysis tools the surface porosity of this Ion 
Power MEA can be determined. We can also determine if porosity is 
changing over time and to what degree. 
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Agglomerate Structure

View of the three 
phase structure of 
the catalyst layer. 

We can see the 
carbon particles 
(which are 
supporting the 
platinum catalyst) 
mixed with the 
Nafion.
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Dimensions and Cross Sections

ETEK cross section – Cut

Cross section – freeze fractured
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Delamination

Using the SEM we can determine the degree of delamination as seen in 
this Sample. 
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Compositional Analysis
F C

Pt O

Using the X-ray analysis tools 
on the SEM we can examine 
the composition of the 
materials like this Ion Power 
membrane. 

We can determine if metallic 
bipolar plates are leaching ions 
onto the MEA.
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GDL

As the GDL is used the Teflon coating may degrade and be washed away.
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THE OBJECTIVE IS DESIGN IMPROVEMENT 
WITH RELIABILITY ANALYSIS

• Must account for stochastic behaviour of cells
• Includes a Degradation Model’, (durability) 

where ‘Failure’ is degradation to below 
threshold value for specific parameter (e.g.
voltage, efficiency, power) Catastrophic failure 
of the MEA 

• Goal of the analysis is to allow an 
understanding of the impact of design (e.g.
redundancy - increase loading of catalyst) and 
operation changes (e.g. limitation of operating 
states) on EOL performance
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PERFORMANCE MEASURES  OF A
FUEL CELL STACK

Mean Time to Failure (function of reliability and decay rate)

– Power Capacity - kW net electrical output 
(Durability - <5% power degradation)

– Fuel Efficiency - % based on LHV of fuel 
(60% at ‘25% peak power’, and 48% at peak power)

– Minimum Voltage Output - volts

– ‘System’ dominated parameters 
• Response Time - %  power increase per minute from idle

• (Emission Targets -)
w (specific target values for particulate, VOC, SO2, NOx, CO2) 

– Voltage Deviation
• Voltage Decay Rate - no higher than a number of Volts/hour of 

operation (used  as an indicator of life cycle)

• Increase in the Standard Deviation of the Voltage
• Appearance of ‘instability’ or Outliners in performance
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STACK AGEING MODEL 
(100 CELLS – 100 cm2)
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RELIABILITY BLOCK DIAGRAM
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OPERATION WITH MEA 
FAILURE AND RENEWAL
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RENEWAL RATE VARIATION
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IMPROVING COMPONENT 
EFFECTIVENESS IN DESIGN

• Redundancy (e.g. increase weight of catalyst)
• Increase the robustness of key components 
• Mechanical & Thermal integration 
• Reduce Material flows
• Material Compatibility (especially replacement 

parts)
• Modularity / Commonality
• Strong QA/QC program
• Consistency in manufacturing
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IMPROVING COMPONENT 
EFFECTIVENESS DURING OPERATION

• Limited by the ‘built-in’ Reliability / Performance 
• Control System & Strategy improvements 

– Reduced cycling & operating states 
– Operation at less stressful conditions, e.g. operating voltage
– Reduced variation of: temperature - pressure - fuel utilization 
– Pressure Balance across membrane
– Improved water management

• Operator / Maintenance Training
• Maintenance Planing/Program (e.g. stocking of spares, 

strong PM program)
• Consideration of Reliability Centered Maintenance 

(RCM)
• Management System (records, corrective action system, 

procedures)
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ACHIEVING 
RELIABILITY GROWTH

• Operational Models 
• Reliability Models / Projections
• Reliability Data Collection
• Review/Correlation of Reliability& Operational Data
• Performance Testing Program
• Continuous Operation vs. ‘Stress’ Testing Program 

(i.e. HALT, HASS testing)
• Life Cycle Analysis and Planning
• Constant communication with design and 

manufacturing teams
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QUESTIONS
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RESEARCH INTERESTS
• Operating a Fuel Cell Test Station now
• Reliability of PEM Fuel Cells/Stacks 

– Traditional FMEA
– Cell/Stack degradation modelling
– Systems reliability/availability models
– Failure Diagnostics/Accelerated Testing 

• Modelling of PEM Fuel Cells (and SOFC)
• Life Cycle Analysis of PEM Stacks and Systems
• Reliability of Polymeric Materials in PEM Fuel 

Cells
• Reliability and Modelling of PEM fuel cell 

systems linked to hydrogen generation systems
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Potential 
Failure Mode and Effects Analysis
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RELIABILITY BLOCK DIAGRAM 
(RBD)

Mechnical Failure
Improper lamination
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Hydration Cycling

4

Voltage Degradation

Decrease of Mass Transfer Increase in Membrane ResistanceDecrease of Catalyst Activity

Age

1

Contamination

3

Thermal Event

2

DelaminationPolymer Degradation

A B

Thermal Event

2

FAULT TREE ANALYSIS (FTA)



Michael Fowler –University of Waterloo - Presentation for ME 751

F: High infant to slowly increasing

A: Bath-tub curve –
infant mortality and wear-out

C: Slowly increasing 
failure rate

D: Low failure when new with rapid 
increase to constant failure rate

B: Slowly increasing rate 
leading to wear-out

E: Constant failure rate 
(random failure)

SIX PATTERNS OF FAILURE
(Ref: Moubay, RCM)
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MODELLING OF 
STOCHASTIC BEHAVIOUR

Simulation 100 Cell  Stack
 50.56 cm2 Area,   3atmg, H2 /Air SR 1.2/2
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VARIATION IN 
DEGRADATION RATES
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Short Courses

• Spill Control and Hazardous Material Management
• Environmental Impact Assessment
• Environmental Auditing and Environmental Law
• ISO 14,000 (EMS)
• Storage Tank Management
• Contaminated Site Assessment & Risk Assessment
Other Courses
• Process Hazard Analysis/Reliability
• Environmental Business Case Development
• Officer Professional Development Program (Honours)

Both Taken and Taught
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Modification can be done in either the stack design or control variables to improve reliability and prolong life.
Using the Generalized Steady State Electrochemical Degradation Model for a the PEM, design

features and control strategies can be developed that allow for the optimization of various
performance factors within a fuel cell over its life cycle.

Design Features Operating Strategies
Cell Active area Load cycling
Catalyst type Hydrogen and Oxygen stoichiometric ratios
Catalyst loading Stack temperature
Number of cells per stack Stack pressures
Number and configuration (e.g. parallel or series)
of cells or stacks
Material Choice for polymer electrolyte and
backlayer

Current Engineering Options 
for Reliability Management
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SELECTED CAUSES/
MECHANISMS OF THE FAILURE MODES

• Defect Propagation (leading to pinholes or shorting)
• Load stress and/or load cycling
• Thermal stress and/or thermal cycling 
• Pressure stress and/or pressure cycling
• Hydration Cycling
• Start/stop cycling
• Reactant shortage
• Reactant flow configuration
• Uniformity of cell design and assembly 
• Contaminants from reactants
• Contaminants leached from fuel cell components
• Degradation of electrode or electrolyte materials
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• intrinsic reactivity (thermodynamic, chemical 
and physical instability), including material corrosion 
and degradation

• manufacturing irregularities and design 
flaws

• reactant contaminants (including those 
contaminants that may leach from the reactant storage 
and delivery systems)

• abusive handling

DETERIORATION  CAN 
NOT BE AVOIDED
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Stack Ageing - Kinetic Loss
Single Cell 
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Stack Ageing- 
Loss of Conductivity
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Stack Ageing - Kinetic Loss
Single Cell 
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Stack Ageing- 
Loss of Conductivity
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Stack Ageing -
Mass Transport Loss
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VOLTAGE DEGRADATION 
CURVE FOR A SINGLE PEM CELL
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Stack Ageing -
Mass Transport Loss
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RELIABILITY OF 
FUEL CELL STACKS

• High Reliability - no moving parts, modular design, no high 
mechanical stresses, few extreme operating conditions

• PEM stacks pass shock, vibration and angle tests
• Loss of integrity is a concern (physical damage, leaks, 

freezing of stack, or failure of compression system)
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RELIABILITY OF 
FUEL CELL STACKS

• High Reliability - no moving parts, modular design, no high 
mechanical stresses, few extreme operating conditions

• PEM stacks pass shock, vibration and angle tests
• Loss of integrity (physical damage, leaks, freezing of stack, or 

failure of compression system)

• Little attention to ‘cycling’ in the literature
• Stack Balance of Plant failures - e.g. cooling system 

failures, water treatment system failures, sensors, 
control system

• Maintenance Time, Stability Issues and Testing will 
effect availability, but little data is available and this is 
not the focus of the research



The MEA
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MEMBRANE ELECTRODE 
ASSEMBLY (MEA)

• Beyond burn-in period reliability is high (quality 
control issue)

• Membrane Integrity (cross-over concern)
– differential pressure
– ‘cycling’ (thermal, pressure, hydration) will lead to mechanical

stresses
– thermal damage (heat or freezing)

• Electrode compaction/degradation
• Degradation of performance is principal failure ‘effect’
STABILITY ISSUES
• Contamination/Poisoning (will result in voltage reversible 

degradation or long term irreversible degradation)

• Flooding or Dehydration
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OBJECTIVES OF THE 
RESEARCH

• Further the application of a generalized PEM 
model (GSSEM)

• Incorporate ‘degradation’ into the PEM model
• Study the reliability and degradation in a 

context of PEMFC design and operation
– developing an understanding and framework 

for PEM component effectiveness



Michael Fowler –University of Waterloo - Presentation for ME 751

DEGRADATION FAILURE MODES  
(leading to degradation of performance or durability)

• Kinetic or activation loss in the anode or cathode 
catalyst

• Ohmic or resistive increases in the membrane or other 
components 
• Changes to eletro-osmotic drag properties 
• Changes to the water diffusion characteristics of the 

membrane

• Decrease in mass transfer rate in the reactant flow 
channel or electrode 
• Degradation of mass transfer rate of water in the cathode 

electrode
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DEGRADATION FAILURE MODES 
(leading to degradation of performance or durability)

• Loss of reformate tolerance of the catalyst
• Delamination of the membrane from the 

electrode
• Degradation of the electrode material that can 

either change the mass transport properties, or 
release material that can contaminate the 
membrane material

• Mechanical function loss or loss of integrity of 
the membrane or stack seals (efficiency loss)
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CAUSES/MECHANISMS OF THE 
DEGRADATION FAILURES MODES

(i.e. something that can be controlled)

• Contaminants from reactants (including dust)
• Contaminants leached from fuel cell 

components
• Degradation of electrode or electrolyte 

materials
• Poor water management (flooding and 

dehydration) or simply the presence of liquid 
water

• Catalyst migration or ripening
• Loss of catalytic or electrolyte material
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CAUSES/MECHANISMS OF THE 
FAILURES MODES (continued)

• Load stress and/or load cycling
• Thermal stress and/or thermal cycling 

(including freezing)
• Pressure stress and/or pressure cycling
• Start/stop cycling
• Uniformity of cell design and assembly 
• Reactant shortage
• Reactant flow configuration
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AGEING MODEL FOR THE FUEL 
CELL STACK

• Based on the Generalized Steady State Electrochemical 
Model (thus - Generalized Steady State 
Electrochemical Degradation Model)
(Ageing Model and Degradation Model jargon still used interchangeably)

• Largely mechanistic, but includes some empirical 
terms/expressions

• Currently limited to Nafion membranes, Pt catalyst
• Different life parameters that may be considered:

– time-in-service, time-on-shelf, total energy output, 
start/stop cycles, load cycles, hydration events



Ideal and Actual Fuel Cell 
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• proposed ageing rate (kDR) of is -10 µV/hrK

• –0.0015 hr-1 for λDR represents approximately a 10 
percent degradation is voltage (at a typical operating 
level) over 5,000 hours

• term related to the loss of mass transport of reactants 
(not yet included)

*
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cell 2
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AGEING PARAMETERS



Stack Ageing Model
Single Mark IV Cell
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Stack Ageing Model
Single Mark IV Cell
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Stack Ageing Model
Single Mark IV Cell

kdegradation = 0.000015   Lambdadecay = 0.0  PorosityDecay = 0
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Stack Ageing Model
Single Mark IV Cell

kdegradation = -0.00001   Lambdadecay = -0.0015   PorosityDecay = 0
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USES OF THE AGEING/
DEGRADATION MODEL

• Tool to be used in Fuel Cell Stack and System Modelling 
• Diagnosis of MEA and/or Stack design changes
• Projection of performance throughout desired life
• Tool to be used with testing programs (will allow for 

shorter testing periods) 
• Tool for development and testing of Control Systems

and Control Strategies
• Estimation of reliability throughout desired life period
• Tool to be used with a reliability growth program
• Tool for comparison of the Component Effectiveness of 

different Stacks
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COMPONENT 
EFFECTIVENESS

• The probability that the component can 
successfully meet operational demand within a 
given time when operated under specific 
conditions.
– Technical performance (capability, operation parameters)
– Efficiency (range, endurance)
– Size/Weight
– Reliability (i.e. durability, availability, stability, dependability)
– Safety
– Life
– Life Cycle Costs (life cycle costs can be traded off with stack 

design & operational decisions)
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RELIABILITY ANALYSIS

• Function of degradation evaluation, i.e. to below a 
certain level of Component effectiveness (durability)

• Degradation to below threshold value for specific 
parameter (durability)

• Catastrophic failure of the MEA or plate (cracking or 
smudging)

• Loss of Integrity leading to safety hazard
• Goal of the analysis is to allow an understanding of the 

impact of design (e.g. redundancy - increase weight of catalyst)
and operation changes (e.g. limitation of operating states) on 
EOL performance
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UNIQUENESS OF THE 
RESEARCH

• Incorporation of degradation factors in PEM modelling 
to predict EOL performance has not yet been done 
(GSSEDM is unique)

• PEM Stacks are relatively novel and not yet fully 
commercialized 

• Discussion of ‘Component Effectiveness’ parameters 
for PEM fuel cells is limited (and will vary depending on the 
application)

• Reliability analysis for PEM Stacks is unique 
• Use of mechanistic and degradation modelling in 

reliability analysis is novel 
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Modelling Fuel Cell Performance as 
Stochastic Process

• Variation in behaviour can be attributed to 
experimental error (the stochastic component):

– environmental conditions;
– reactant flow and pressure fluctuations;
– varying rates of water accumulation;
– difference in MEA quality from one MEA to the next;
– differences in the contact resistance between the cells;
– reactant conditions and quality (including contamination),; 
– instrumentation and measurement error; and,
– control set point error.

There will be some error associated with the inadequacy of model or lack of fit of the model.
Note that a stack with a large number of cells will compensate for the variability in 
performance
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MEA MATERIALS

Layer Bi-Polar
Plate

Gas
Diffusion
Layer –
Anode

Anode Electrolyte
Membrane

Cathode Gas
Diffusion
Layer -
Cathode

Material Graphite
in Vinyl

Ester

PTFE
Treated
Carbon
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Pt/Ru on
Carbon
Support

Perfluoro-
sulfonic

Acid

Pt on
Carbon
Support

PTFE
Treated
Carbon
Paper

Thickness
(µm)

4750 100 20 40 20 100

Catalyst
Loading
(mg/cm2)

Pt: 0.4
Ru: 0.2

Pt: 0.4



Michael Fowler –University of Waterloo - Presentation for ME 751

P
ow

er
d

en
si

ty
(W

/k
g)

10

Energy density (Wh/kg)
1001 1000

100

10

1

10000
4 s

6
min40 s

1 h

10
00

h

10
h

1000

10
0 h

Thermal

Primary
Lithium

Lead-acid

Ag-Zn

Ni-Cd Internal Combustion and Fuel Cells

High temperature
systems

Ragone Plot for Various Power 
Sources



Michael Fowler –University of Waterloo - Presentation for ME 751

PEM FUEL CELL STACK
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STACK DESIGN PARAMETERS

• MEA active area
• Aspect Ratio
• Number of Cells
• Plate Materials
• Flow configuration
• Gas Delivery System
• Cooling System (plate material, fluid choice)
• Stack construction and clamping pressure
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MEA DESIGN PARAMETERS

• Membrane
– type of material (PFSA/perfluorosulfonic acid or Nafion)

– thickness
– reinforcement material

• Catalyst
– type 
– dispersion
– amount

• Electrode
– type of material
– thickness & density
– anti-wetting

• Impregnation material/method
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STACK OPERATING PARAMETERS

• Temperature (Increases will result in…)
– increases stack efficiency
– heat may be of a better quality, system may be more thermally 

matched
– water management may become a problem
– higher heat losses , sealing, thermal expansion and material corrosion 

issues

• Pressure (Increases will result in…)
– increased stack efficiency, reduced heat lost, reduced piping
– increased parasitic load & higher capital costs
– more complexity, less reliability, different material considerations 

(corrosion)

• Humidification
• Stoichiometry (or Utilization)
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Temperature Influence
Single Mark IV Cell
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PEM FUEL CELL

Cells arranged  to 
form a ‘stack’.

MEA



Ideal and Actual Fuel Cell 
Voltage/Current Characteristics
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Pressure Influence
Single Mark IV Cell
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MARK IV - VOLTAGE DEGRADATION 
PLOT (0.431amp/cm2)

y = -1E-04x + 0.7571
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Catalyst Deactivation

• Ageing or Sintering (Physical Deactivation)
– crystal agglomeration and growth
– internal surface area of the catalyst and 

supports are reduced through the narrowing or 
closing of pores

• Poisoning (Chemical Deactivation)
• Coking (fouling - Chemical Deactivation)
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CATHODE CONTAMINATES

• SO2 (can be 5ppm in cities)

– dependent on operating conditions

• NH3 and NO2 (little or no impact, reversible)

• CO small reversible impact
• Salt Air not significant
• Battlefield Contaminants are an issue
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ANODE CONTAMINANTS

• 10ppm CO (reversible)
• Sulphur components
• N2 and CO2 inert
• CH4 - relatively inert
• Methanol, Formaldehyde, Formic Acid, 

Methyl-format (reversible performance 
loss)

• Metals will damage the MEA
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OVERALL FUEL CELL 
SYSTEM EFFICIENCY

• Thermal & Material Integration 
– matching sub-system temperatures
– using the heat internally & efficient thermal transfer
– using the product steam/water 
– Co-generation or Bottoming Cycle (turbine, space or water heater, chiller)

• Pressurization increase improves stack performance
– but requires energy, increased cost & reduces reliability

• Temperature increase improves stack performance
– but reduces reliability & increases corrosion

• Fuel Utilization and/or Flow Rate
– Air/fuel flow needed for water and thermal management
– fuel needed to heat the reformer

• Parasitic Power Losses & Complexity must be 
considered
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PERFORMANCE MEASURES  OF A
FUEL CELL STACK

• Mean Time to Failure (function of reliability and decay rate)
• Mean Time Between Forced Outages/Derating

(dominated by stability issues)
• Overall Reliability/Availability (which includes stability issues):

– Power Capacity - kW net electrical output

– Fuel Efficiency - % based on LHV of fuel

– Minimum Voltage Output - volts

– ‘System’ dominated parameters 
• Response Time - %  power increase per minute from idle

• (Emission Targets -)
w (specific target values for particulate, VOC, SO2, NOx, CO2)

• Voltage Decay Rate - no higher than a number of 
Volts/hour of operation (used  as an indicator of life cycle)

*Performance targets over a 40,000 hour life-cycle, or 5,000 hours for automotive application
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SYSTEM EFFECTIVENESS

• The probability that the system can 
successfully meet operational demand within a 
given time when operated under specific 
conditions.
– Technical performance (capability, operation parameters)
– Efficiency (range, endurance)
– Size/Weight
– Reliability (i.e. durability, availability, stability, dependability)
– Safety
– Life
– Life Cycle Costs (life cycle costs can be traded off with stack 

design & operational decisions)
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Managing System Effectiveness

Complex trade-off between 
stack efficiency, system 

effectiveness  and operating 
parameters.

Reliability system will also depend 
on selection of operating 

parameters.

Reliability and System Effectiveness 
can therefore be managed (and 
monitored) through a control 

strategy.
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PERFORMANCE MEASURES  OF A
FUEL CELL STACK

• Mean Time to Failure (function of reliability and decay rate)
• Mean Time Between Forced Outages/Derating

(dominated by stability issues)
• Overall Reliability/Availability (which includes stability issues):

– Power Capacity - kW net electrical output

– Fuel Efficiency - % based on LHV of fuel

– Minimum Voltage Output - volts

– ‘System’ dominated parameters 
• Response Time - %  power increase per minute from idle

• (Emission Targets -)
w (specific target values for particulate, VOC, SO2, NOx, CO2)

• Voltage Decay Rate - no higher than a number of 
Volts/hour of operation (used  as an indicator of life cycle)

*Performance targets over a 40,000 hour life-cycle, or 5,000 hours for automotive application
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BALANCE OF PLANT

• Pumps, Compressor/Expanders, Burners, 
Heat Exchangers, Condensers, 
Vaporisers, transformer/inverter, piping 
& connectors, switches, monitors, control 
systems (software), control strategy

• Power Conditioner (94-98% efficiency)
• Fuel Storage and Handling
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BALANCE OF PLANT 
RELIABITLY (for the DoD program)

Mechanical 
Components

Pumps
Fans

Valves
Heat Exchangers

Miscellaneous
Sensors

Site Procedures
Quality

Electrical, 
Electronic
Printed Wiring 

Boards
Switch Gears

Data for a ‘fleet’ of 36 DoD PAFCs

BOP reliability simply an issue of:
engineering commitment, quality control and cost.

•Literature indicates that balance of plant is the 
most significant issue for fuel cell reliability at this time.
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FUEL PROCESSING 
SYSTEM

• Materials and Containment Issues

• Deactivation of Reformer Catalyst (Cu/ZnO/Al2O3)

(physical causes, poisoning by impurities, poisoning by reactants or products)

• Chlorides, Arsenic
• Sulphur (can be ‘leached out of seals’)
• Carbon (‘Coking’) Deposition (function of Steam/Carbon 

ratio)

• Thermal Damage
• Sintering (Catalyst Deactivation)
• Dew Point Concern
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Reformer Catalyst
Deactivation Curves
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U.S. DoD FUEL CELL 
DEMONSTRATION PROGRAM

• 30 PAFC - natural gas fuel cells 
• Unadjusted Availability

– Model B Fleet   64%
– Model C Fleet   80%

• Reported as above 95% availability on 
the manufacture’s web site

* from DoD presentation at Grove 1999
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Average Cell VoltageAverage Cell Voltage

*U.S. DoD Fuel Cell program
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LIFE CYCLE COSTING (LCC)

• The economic evaluation of the design concepts as an 
element of each product development / selection 
process.

• ‘Total Cost of Ownership’: acquisition, fuel, 
maintenance, disposal, waste disposal, environmental 
costs

• Four most common methods for such a life-cycle 
economic assessment are:
– Total Cost Accounting
– Life-Cycle Costing
– Full Cost Accounting
– Environmental Life-Cycle Cost

• ‘Design for the Environment’ considers the  Environmental / 
Economic impacts occur over an entire product life-cycle



Inventory Analysis
-Material and Energy Acquisition

-Manufacturing
-Use

-Waste Management

Impact
Assessment

-Ecological Health
-Human Health

-Resource Depletion

Goal
Definition

And
Scoping

Improvement
Assessment

Technical Framework for
Life Cycle Assessment

Ref: SETAC
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LIFE CYCLE ANALYSIS 
STEPS

1) Goal definition:  the basis and scope of the evaluation are 
defined.

2) Inventory Analysis:  create a process tree in which all 
processes from raw material extraction through waste water 
treatment are mapped out and connected, mass and energy 
balances are closed, and emissions and raw material and energy 
consumption are accounted.

3) Impact Assessment:  Environmental loading identified in the 
inventory are translated into environmental effects.  The 
environmental effects are grouped and weighted.

4) Improvement Assessment:  Areas for improvement are 
identified.
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LIFE CYCLE ANALYSIS / 
ASSESSMENT (LCA)

• LCA is an assessment technique based on the cradle-to-
grave concept.
– evaluating the potential environmental and economic impacts 

(LCC or Life Cycle Costing) of a product or service,
– considering such aspects as extracting and processing raw 

materials, manufacturing, distribution, recycling, resource 
consumption and waste management.

• Valuable decision-support tool
• Three well-documented and used methods for 

environmental analysis are:
– Eco-Points method
– Environmental Priority System
– Eco-Indicator
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RELIAIBILITY JARGON

• Availability -
– % of a power sources fully operational hours divided by the 

planned/expected hours
– ‘Available’ if all performance specifications are achievable
– Conditionally Available (Derated) if 30%-100% of 

performance factor is achievable
– Not available - down time, maintenance periods
– Not in service, or cold stand-by time not included
– Mean Time Between Forced Outages (MTBFO)
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IMPROVING COMPONENT 
EFFECTIVENESS IN DESIGN

• Redundancy (e.g. increase weight of catalyst)
• Increase the robustness of key components 
• Mechanical & Thermal integration 
• Reduce Material flows
• Material Compatibility (especially replacement 

parts)
• Modularity / Commonality
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IMPROVING COMPONENT 
EFFECTIVENESS DURING OPERATION

• Limited by the ‘built-in’ Reliability / Performance 
• Control System & Strategy improvements 

– Reduced cycling & operating states 
– Operation at less stressful conditions, e.g. operating voltage
– Reduced variation of: temperature - pressure - fuel utilization 
– Pressure Balance across membrane
– Improved water management

• Operator / Maintenance Training
• Maintenance Planing (stocking of spares)
• Consideration of Reliability Centred Maintenance 

(RCM)
• Management System (records, corrective action system, 

procedures)



Michael Fowler –University of Waterloo - Presentation for ME 751

ACHIEVING 
RELIABITIY GROWTH

• Operation Models 
• Reliability Models / Projections
• Reliability Data Collection
• Review/Correlation of Reliability& Operational Data
• Performance Testing Program
• Continuous Operation vs. ‘Stress’ Testing Program
• Life Cycle Analysis and Planning
• Constant communication with design and 

manufacturing teams
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Potential 
Failure Mode and Effects Analysis
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RELIABILITY BLOCK DIAGRAM 
(RBD)

Mechnical Failure
Improper lamination
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Hydration Cycling

4

Voltage Degradation

Decrease of Mass Transfer Increase in Membrane ResistanceDecrease of Catalyst Activity

Age

1

Contamination

3

Thermal Event

2

DelaminationPolymer Degradation

A B

Thermal Event

2

FAULT TREE ANALYSIS (FTA)



F: High infant to slowly increasing

A: Bath-tub curve –
infant mortality and wear-out

C: Slowly increasing 
failure rate

D: Low failure when new with rapid 
increase to constant failure rate

B: Slowly increasing rate 
leading to wear-out

E: Constant failure rate 
(random failure)

SIX PATTERNS OF FAILURE
(Ref: Moubay, RCM)
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PROCESS &
CONTROL TEST

• Performance
– Maximum Capacity
– Minimum Power
– Load Change Rate (5% per minute)
– Emissions (noise, water, vibration - as per regulations)

• Reliability/Safety
– Operation Time
– Load Operation 30-100%
– Load Trip 30-100% to 0% (safety stop)
– Differential Pressure

• Operating Procedure
– Procedure Established Hot/Cold Start
– Cold Start
– Hot Start
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MY ACADEMIC INTERESTS

• Developing the concept of 
Component Effectiveness of Fuel Cell Systems

• Development and Demonstration of a 
Concurrent Engineering Technique -
Reliability / System Effectiveness Modelling

• Integrating Systems Models with System 
Effectiveness Models

• Life Cycle Analysis / Costing
– Environmental Life Cycle Analysis
– Life Cycle Engineering / RCM
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MY INTERESTS
(part of an academic program at RMC)

• Fuel Cell System Technology
• Developing the concept of 

Component Effectiveness of Fuel Cell Stacks
• Reliability / Component Effectiveness Modelling
• Integrating Systems Models with Component 

Effectiveness Models
• Life Cycle Analysis / Costing

– Environmental Life Cycle Analysis
– Life Cycle Engineering / RCM

• Working with real systems (Stationary PEM, Marine PEM, 
SOFC)

• Concurrent Engineering
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MEA 
RENEWAL VS NO RENEWAL
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Modification can be done in either the stack design or control variables to improve reliability and prolong life.
Using the Generalized Steady State Electrochemical Degradation Model for a the PEM, design

features and control strategies can be developed that allow for the optimization of various
performance factors within a fuel cell over its life cycle.

Design Features Operating Strategies
Cell Active area Load cycling
Catalyst type Hydrogen and Oxygen stoichiometric ratios
Catalyst loading Stack temperature
Number of cells per stack Stack pressures
Number and configuration (e.g. parallel or series)
of cells or stacks
Material Choice for polymer electrolyte and
backlayer

Current Engineering Options 
for Reliability Management


