

Solid Oxide Fuel Cell Research at the University of Waterloo

Rapeepong Suwanwarangkul

Wei Zhang

Department of Chemical Engineering

Supervised By

P.L. Douglas, E. Croiset,

M.W. Fowler & E. Entchev

Introduction

- UW and CANMET have been involved in research on clean energy from fossil fuels for many years/decades
- Focus in recent years has been on CO₂ mitigation technologies
 from fossil-fuel based power plants
 - Higher efficiency power plant
 - \succ CO₂ capture and storage (energy intensive, costly)
- SOFC appears very promising in terms of efficiency and reduced cost of capturing CO₂

SOFC Research at Waterloo

- SOFC Research at Waterloo started in 2001
 - 2 published research papers and 1 about to be submitted
- Main activity: computer simulation
 - Process simulation (Aspen Plus)
 - Fundamental single cell modeling (Matlab, Femlab)
- Current focus:
 - SOFC power generation from coal/natural gas
 - \succ Effect of mixtures of CO/H₂ on cell performance
 - > CO₂ capture from SOFC systems
- Collaboration with CANMET Energy Technology Centre

SOFC Research at Waterloo - Personnel

- Supervisors:
 - Eric Croiset, assistant professor
 - Peter Douglas, professor
 - Michael Fowler, lecturer
 - Evgueniy Entchev, research scientist, CANMET
- Graduate students:
 - Rapeepong Suwanwarangkul, Ph.D. candidate
 - Wei Zhang, M.A.Sc. candidate
 - Leslie Backham, M.A.Sc. candidate

Overall Research Objective

Investigate/develop SOFC-based power generation processes that can simultaneously:

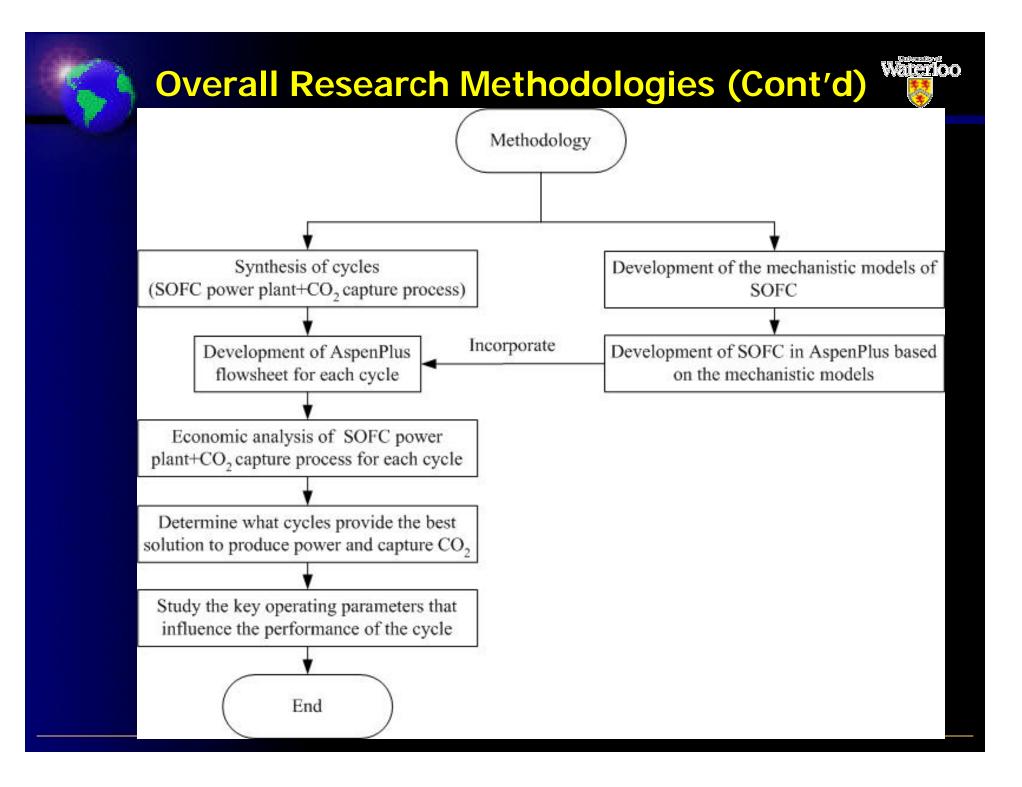
> achieve high electricity generation efficiencies

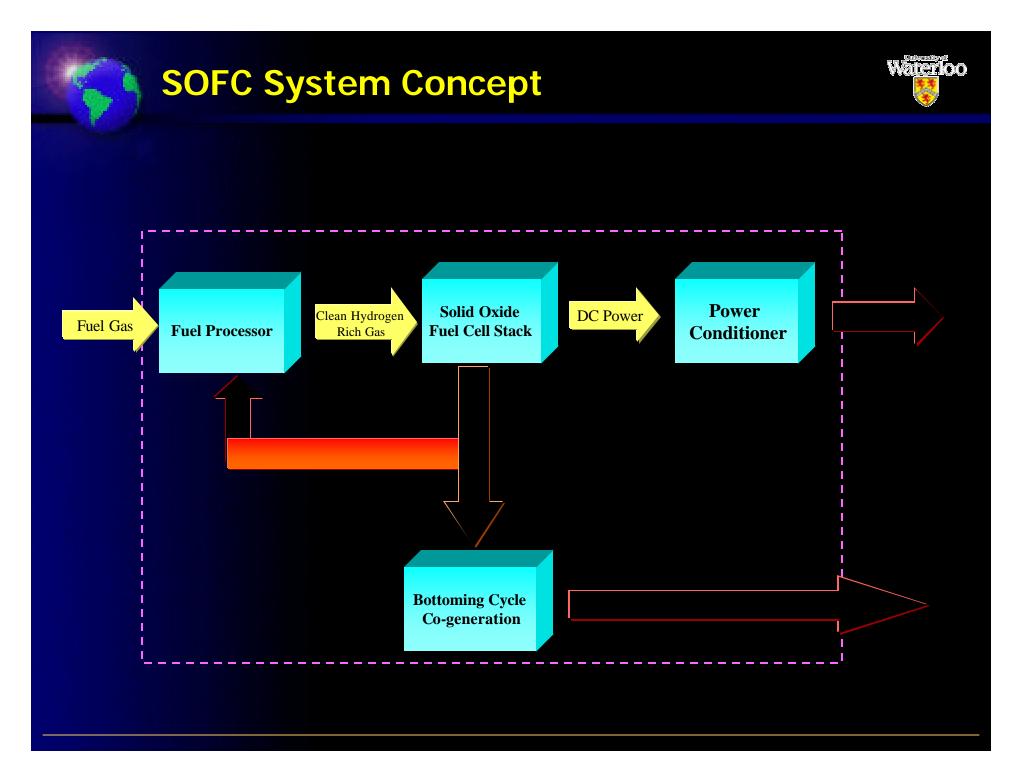
> generate pure CO₂ with minimum energy/cost penalty

Key Issues to be Investigated

- Key operating variables:
 - fuel composition (Especially H₂ and CO mixtures)
 - utilization factor
 - temperature
 - pressure
 - operating cell voltage or current density
- Cycle options for CO₂ capture and concentration
 oxygen enrichment, chemical absorption
- Efficiency and cost

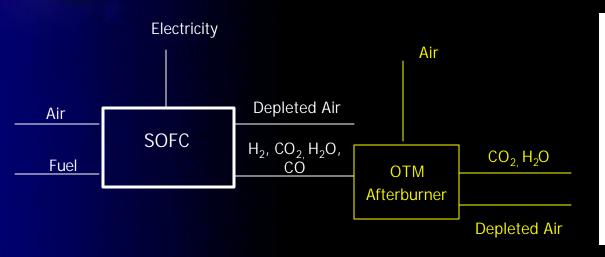
Overall Research Methodology

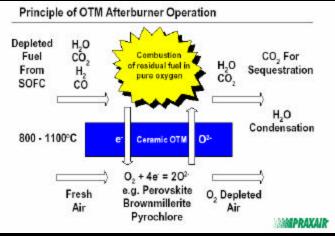

Synthesis:

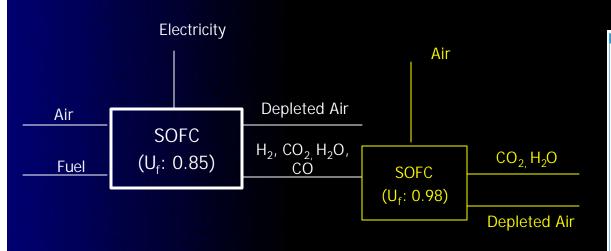

 examine potential SOFC-based power generation/CO₂ capture cycles at conceptual level

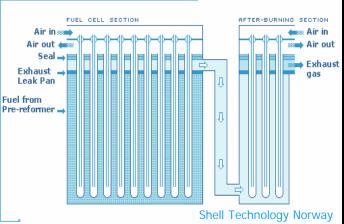
- SOFC cycle models in Aspen Plus:
 - develop SOFC (empirical) and process cycles models into Aspen Plus, allowing for integration, optimization and, eventually, costing

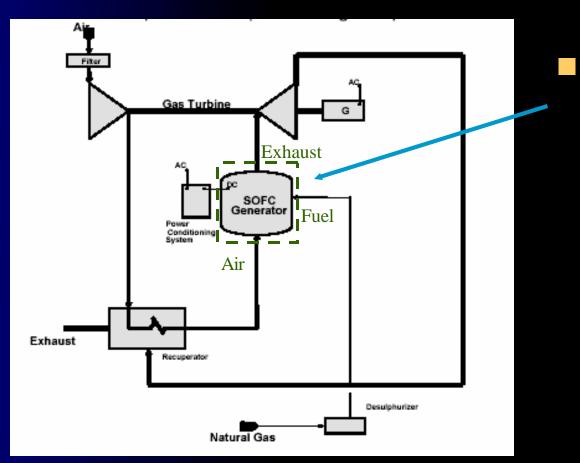
Mechanistic Model


 develop a fundamental model to simulate fuel cell performance over a wide range of operating conditions, fuel compositions, and cell designs






CO₂ Capture Using SOFC



DNSEPTUAL DESIGN OF THE DEMONSTRATION UNIT

SOFC Modeling in Aspen Plus: Challenge

How to develop a SOFC Model, which can

Waterloo

- Predict the fuel cell performance accurately
- Be implemented in Aspen Plus

SOFC Modeling in Aspen Plus: Approach

Common Approach

Develop a complete
 SOFC stack model in a
 programming language
 such as Fortran or C++

 Link it to a commercial simulator (Aspen Plus, Hysis, Proll) as a userdefined model or subroutines.

Our Approach

 Incorporate a series of fuel cell performance curves (expressed by semiempirical equations) into Aspen Plus

 Develop the rest of SOFC using existing Aspen Plus unit operation models

Aspen Plus SOFC Model 30 9 15 Exhaust RECUPER Air HEATER2 14 Q4 CATHODE EJECTOR REFORMER HEATER1 AFTERBUR 13 12 1 Fuel ANODE Q1 SPLIT Q2 5 4 COOLER1 6

Based on the Siemens-Westinghouse natural gas feed tubular internal reforming SOFC technology

Mechanistic Model - Objectives

- Develop an accurate cell-level model to predict steady-state cell performance and flue gas compositions
- Investigate the influence of cell design, microstructure and operating variables on steady-state cell performance and its flue gas compositions
- Develop the cell performance map based on operation of H₂ and CO mixtures
- Generate parameters for correlations used in the AspenPlus model

Parameters To Be Investigated

- Operating parameters
 - Inlet air and fuel temperature
 - Fuel and air utilization (U_f & U_a)
 - Inlet gas composition
 - Steam-to-carbon ratio
- Material parameters
 - Pore size
 - Porosity
 - Tortuosity factor
 - Composition of electronic/ionic conductors
- Design parameters
 - Cell geometry (length, width, etc.)
 - Electrode thickness
 - Electrolyte thickness

Mechanistic Model - Methodology

- Develop one- and two-dimensional mechanistic model of a single-cell SOFC considering H₂ and CO oxidations.
- Experimental setup and investigation
- Validation of the developed model
- Investigate the influence of cell design, microstructure and operating variables on steady-state cell performance and its flue gas compositions.
- Develop the cell performance map for mixtures of H₂ and CO

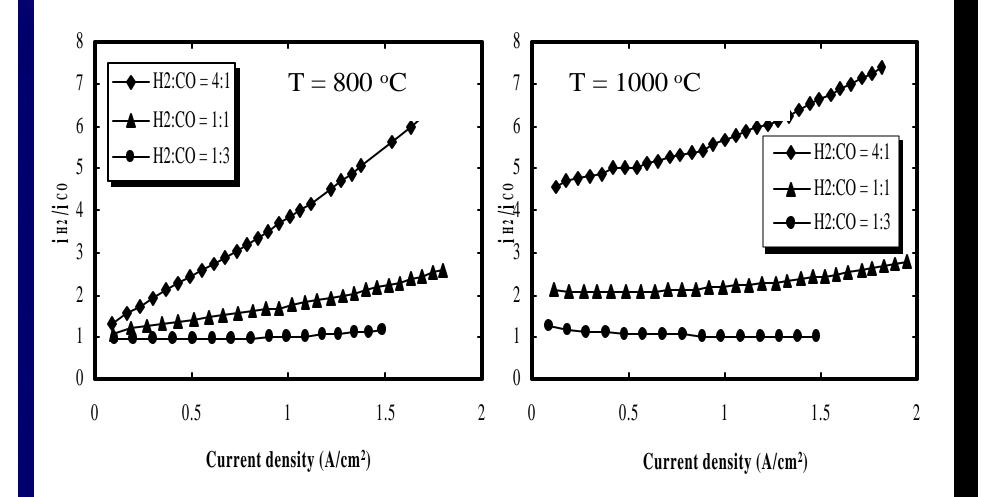
Experimental Setup and investigation

Generate experimentally polarization curves for different situations

Example of proposed experimental plan

Fuel no.		Compo	osition	P(CO)	H ₂ :CO	
	H_2	H ₂ O	CO	CO_2	$\overline{P(CO) + P(H_2)}$	
	(%)	(%)	(%)	(%)		
F 1	80	20	0	0	0	1:0
F2	64.2	16.0	14.9	4.9	0.20	4:1
F3	38.8	9.7	38.8	12.6	0.50	1:1
F4	18.8	4.7	57.8	18.8	0.75	1:3
F5	0	0	75.5	24.5	1	0:1

Preliminary Model Results- Model Validation



Relative consumption of H_2 to CO (mol H_2 /mol CO) for the same concentration of H_2 and CO

Temp.	UW model	Yasuda <i>et al.</i> experiment (1999)
800 °C	1.1-2.6	1.9-2.3
1000 °C	2.0-2.6	2.3-3.1

Model agrees with published experimental data

Preliminary Model Results- Effect of gas compositions

Preliminary Model Results-Effect of Gas Compositions

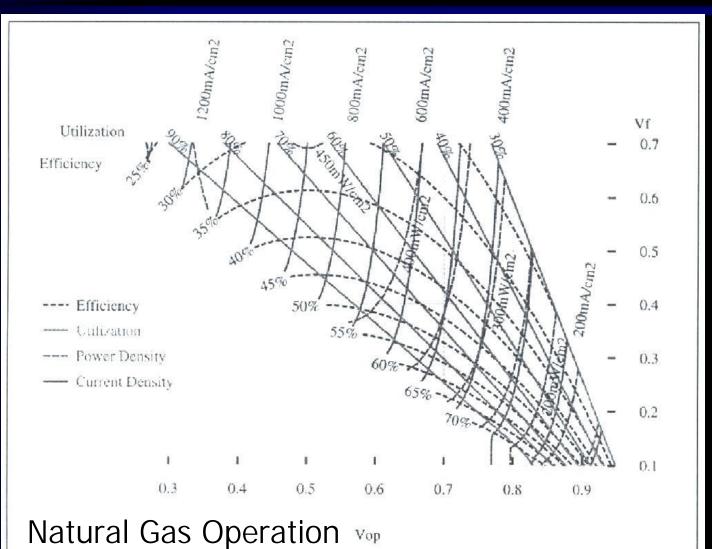
- SOFC performance decreases as CO concentration increases
- H₂:CO should be greater than 1:3 300 °C 09Cell voltage (V) 0.0 Cell voltage (V) 0.4 Cell voltage (V) 0.8 1000 °C Cell voltege (0.7 Increase CO 0.5 0.2 Increase CO $\mathbf{0}$ 0.3 **Power density** (W/cm² 0.3 0.2 0.1 W/cm^{-1} 1.2 **Power density** 0.8 H2:CO = 1:0H2:CO = 4:1ncrease CO - H2:CO = 1:0 + H2:CO = 4:1 -- H2:CO = 1:3 0.4 H2:CO = 1:1 \rightarrow H2:CO = 0:1 0 -- H2:CO = 1:3 Ancrease CO \rightarrow H2:CO = 0:1 0.2 0.6 0.8 1.6 0 1.4 0.41.2 0 3 **Current density** (A/cm²) 0 2

Current density (A/cm²)

Achievements

Two technical papers (One accepted, One to be submitted)

 R. Suwanwarangkul, E. Croiset, M.W. Fowler, P.L. Douglas, E. Entchev and M. Douglas, "Performance Comparison of Fick's, the Dusty-gas and the Stefan-Maxwell Models to Predict the Concentration Overpotential in a SOFC Anode", J Power Sources, In press.


W. Zhang, E. Croiset, P.L. Douglas, M.W. Fowler, E. Entchev and M. Douglas, "Simulation of a Tubular Solid Oxide Fuel Cell Using AspenPlus Unit Operation Models", to be submitted by end of April.

One conference paper

 R. Suwanwarangkul, E. Croiset, M.W. Fowler, P.L. Douglas, E. Entchev and M. Douglas, "Modeling of Anode-supported SOFCs Operating with H₂ and CO Feed Mixtures", Proc. Of 8th International Symposium on Solid Oxide Fuel Cells (SOFC-VIII), S.C. Singhal, M. Dokiya (Eds.), 1348-1357 (2003).

Cell Performance Map

SOFC Performance Map, H2O/CH4 = 2.0, 0.5 ohm-cm2

Design of Experiment

Gas comp.	U _f		U _a		S/C ratio		T _a		Τ _f	
	High	Low	High	Low	High	Low	High	Low	High	Low
F1	V	V	V	V			V	V	V	V
F2	V	V			V	V				
F3	V	V			V	V				
F4	V	V			V	V				
F5	V	V	V	V			V	V	V	V

Each experiment must be performed 3 times.

- Interest experimental data:
 - Cell power
 - Exit gas compositions
 - Fuel and air flowrate
 - Exit fuel and air temperature