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Stable and Unstable Phases of a Diblock Copolymer Melt
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Using self-consistent field theory, we examine microphases of diblock copolymers and find, in
addition to lamellar, hexagonal, and cubic phases, a stable gyroid phase which occurs between the
lamellar and hexagonal ones. It terminates at a triple point, with a lamellar to hexagonal transition
occurring in the weak-segregation limit. Other phases of experimental interest are studied, and we
describe the regions in which they are most nearly stable.

PACS numbers: 83.70.Hq, 36.20.—r, 61.25.Hq, 64.60.Cn

Diblock copolymer melts have received much attention
over the past few years due in large part to their ability
to assemble into various ordered structures. They do so
in order to reduce the number of energetically unfavor-
able contacts between the two different blocks comprising
the polymer molecule. The simplest of these ordered mi-
crophases is the lamellar (L) phase in which the A and B
monomers separate into A-rich and B-rich lamellae. It is
observed to occur when the volume fractions of the two
monomers are comparable. If the volume fraction of one
monomer becomes sufficiently greater than that of the
other, the minority component is observed to form cylin-
ders which pack in a hexagonal arrangement, forming the
hexagonal (H) phase. With increasing asymmetry in the
volume fractions, the minority component forms spheres
which then pack in a body-centered cubic arrangement,
the cubic (C) phase. At first, these were the only ordered
phases to be observed. Later, several new phases were de-
tected between the L and H phases. Given the difficulty
of achieving equilibrium in these systems, it was not clear
whether all of the new phases observed were thermody-
namically stable. The most frequently observed of them
is the ordered, bicontinuous, double-diamond (OBDD)
phase [1-3]. In it, the minority component forms two
separate interpenetrating diamond lattices. Catenoid-
lamellar (CL) phases have also been observed [1,2,4-7].
These are lamellar phases in which the lamellae of the
majority component are joined by tubes which perforate
the minority lamellae. If the lamellae of the minority
component are similarly joined, then the phase is bicon-
tinuous [1]; if not, it is monocontinuous. The tubes per-
forating the lamellae form a triangular array, with the
array of tubes in one minority lamellae staggered with
respect to those in the next [4,5]. It has not been de-
termined whether the stacking of these tubes is of the
form abab... or abcabc.... We shall label the phases with
these stackings as CL,p and CLgyc, respectively, and the
analogous phase in which the tubes are aligned from one
lamellae to the next as CL, [8,9]. Most recently, a gyroid
(G) phase has been observed [10]. This is a bicontinuous
phase in which the minority component forms two sepa-
rate interpenetrating lattices which are threefold coordi-
nated, and mirror images of one another. Either lattice,
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by itself, belongs to the space group I4;32; the full struc-
ture comprising both lattices belongs to the space group
Ia3d [11].

The theory of copolymer phases is well understood;
it is simply the mean, or self-consistent, field theory
(SCFT) adapted to polymers [12,13]. Like all mean-
field theories, it ignores the effect of thermal fluctua-
tions. While this effect is observable in the ordering
transitions from the disordered phase, the temperature
region in which these fluctuations are important scales as
an inverse power of the polymerization index and hence
is small for most systems studied [14]. Thus the SCFT
should predict the phase diagram well over almost the
whole temperature region. At first this seemed to be the
case, because the theory does predict the L, H, and C
phases [15,16]. However, the theory has never predicted
either the stability or near stability of any of the more
recently observed phases, which has cast some doubt on
its applicability or, at least, its utility.

In this Letter, we show that such doubts are unfounded
by illustrating that the self-consistent equations can be
solved to examine the stability of all of the phases which
have been reported, and others closely related to them.
We find in addition to the L, H, and C microphases that
the G phase is also stable and occurs between L and H
phases. This phase terminates at a triple point. An L
to H transition occurs for weak segregation, and along
it bicontinuous CL phases are close to stability. For in-
termediate segregation, the free energy of the stable G
phase is only slightly lower than that of the monocon-
tinuous CLgp and CLgp. phases, and their free energies
are, in turn, only slightly lower than that of the OBDD
phase. We cannot perform our calculations in the strong-
segregation limit.

We consider a system of n AB diblock copolymers each
of polymerization, N, and A-monomer fraction, f. We
assume that the A and B monomers occupy a fixed vol-
ume, 1/pp, and that the system is incompressible with
a total volume, V, equal to nN/py. Each polymer is
parametrized with a variable s that increases continu-
ously along its length. At the A-monomer end, s =0, at
the junction point, s = f, and at the other end, s = 1.
Using this parametrization, we define functions, rq(s),
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that specify the space curve occupied by the ath copoly-
mer.
The partition function we use for this system is

Z = / H Dro 61 — ¢4 — éB) exP{—XPO/drquéB} )
a=1

where the functional integral over all configurations is
weighted, Dry = Dry Plrg; 0, 1], with the functionals
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Plrq; s1, 82] ocexp{—z—N—az-/ ds } )
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The Kuhn length, a, is assumed to be the same for both
monomers. The delta functional selects out only those
configurations satisfying the incompressibility constraint.
The Flory-Huggins parameter, x, measures the incom-
patibility between A and B monomers. The dimension-
less A monomer-density operator is given by

d
Zi;ra(s)

. ot
dar) = %; /0 ds 8(r - ra(s)) ,

and @p by a similar expression. To make the expres-
sion for Z more tractable [12], one inserts a functional
integral, 1 = [D®46[®4 — ¢4, which permits the re-
placement of the operator $4 by the function ® 4. Doing
the same for ¢p and inserting standard integral repre-
sentations for the delta functionals, one obtains

Z=N / D&, DW4Ddp DW DE exp{—F/ksT} ,
1)

where NV is a normalization constant,

F/nkpgT = —an+V_1/dr[xN‘I>A<I>B—-WA‘I>A
—Wgdp —E(1-®4 — ®5)], (2)

QE/f)raexp{—/ofdsWA(ra)—/fldsWB(ra)} .

The functional F[®4,Wa,®5,Ws,E] can be evalu-
ated exactly, but the functional integrals in Eq. (1) can-
not. In the SCFT [12], one approximates this integral
by the extremum of the integrand. Thus the free energy,
—kgT'In Z, is given by F[pa,wa,dB,ws,&], where ¢4,
w4, ¢B, W, and £ are the functions for which F attains
its minimum. From its definition, Eq. (2), it follows that
these functions satisfy the self-consistent equations

wa(r) = xNés(r) +&(r) , (3)
wp(r) = xNoa(r) +£(r) , (4)
da(r) +op(r) =1, (5)

V DQ

¢A = _'é D’UJA ) (6)
vV DQ
éB = S Dup (7

The last two equations identify ¢ 4(r) and ¢p(r) as the
average densities of A and B monomers at r as calcu-
lated in an ensemble of noninteracting polymers subject
to the fields, wa(r) and wp(r), which act on A and B
monomers, respectively. The SCFT approximation has
reduced the problem to one of a single noninteracting
polymer in external fields. Once the partition function
of this problem, Q[wa,wp], is known, Egs. (3)-(6) can
be solved and the free energy obtained.

It is at this point that additional approximations are
often made, such as expanding In Q in cumulants, and
keeping only the first few terms [8,15]. Such additional
approximations may be convenient at times, but are un-
necessary because the exact expression for Q can be
evaluated. One writes the partition function as @ =
J dr q(r,1), where

Q(r, S) = /Dra P[l‘a; 0, S]&(r — ra(s)) exp{_ As it
x[y(tywa(ra(t)) + (1 — 'y(t))wB(ra(t))]} ®)

is the end-segment distribution function. The step func-
tion, v(s), is 1 for s < f and O otherwise. This distribu-
tion function satisfies the modified diffusion equation,

og { #Na?V2q—wa(r)g, ifs<f,

ds

9)
tNa®>V3q —wp(r)g, ifs>f,

and the initial condition, q(r,0) = 1 [13]. Because the
two ends of the copolymer are distinct, a second end-
segment distribution function, q'(r,s), is defined with
an almost identical definition, Eq. (8), except that the
functional integration over r4(t) is done for ¢t = s to 1.
It satisfies ¢f(r,1) = 1, and Eq. (9) with the right-hand
side multiplied by —1. In terms of these functions, the
A-monomer density, Eq. (5), is

f
oa(r) = -g—/; ds q(r, s) qf(r, s) . (10)

The expression for ¢g(r) is similar.

Rather than attempting to solve the above problem
in real space, we expand functions of position, g(r), as
3", gifi(r), where fi(r), i = 1,2,3,..., are orthonormal ba-
sis functions [i.e., V=1 [ fi(r) f;(r)dr = 6;;] each possess-
ing the symmetry of the phase being considered. They
are chosen to be eigenfunctions of the Laplacian opera-
tor; V2f;(r) = —\;D~2f;(r), where D is a length scale
for the phase [17]. We order the functions starting with
fi1(r) = 1 such that )\; is a nondecreasing series. In this
basis, the diffusion equation (9) for ¢(r, s) becomes
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> Augi(s), ifs<f,
dgi(s) _ )

ds
ZB.iqu'(S), if s > f s
J

Aij = —éNa2)\,-D‘”26,:j - ZwA,kFijk , (11)
k

where I';jx = V=1 [ f;(r) f;(r) fx(r)dr and the matrix, B,
is given by a similar expression to Eq. (11). The initial
condition is g;(0) = 8;1. The solution to this set of linear
differential equations is

Taul(s), ifs<f,

g(s) = > Trii(s = f) Tan(f), ifs>f,
J

where T4 (s’) = exp(As’) and Ts(s’) = exp(Bs') are ma-
trices that transfer g;(s) a distance s’ along A and B
regions of the copolymer, respectively. These matrices
are easily evaluated by performing an orthogonal trans-
formation that diagonalizes either A or B. Similarly,

ZTA,ij(f —-8)Tp1(1—f), ifs<f,
gf(s)=q ~’
Tpi(l—s), ifs>f.

Now that the amplitudes of the end-segment distri-
bution functions are known, Q is given by Vq;(1), the
amplitudes of ¢4(r), Eq. (5), are

__r t
ba; = m/; dsék:(b‘(s) 0 (s) Tije

and the amplitudes ¢p ; are given by a similar expres-
sion. We adjust the amplitudes wa,; and wpg,; of the
fields so that the densities calculated from them satisfy
¢B;i = —Pa,i = (wa,; — wg,i)/2xN, Egs. (3)-(4). For
i =1, we may set §; = 0, so that wa; = xNép:
and wp,; = xN¢a,1. This completes the cycle of self-
consistent equations. The free energy, Eq. (2), to within
an additive constant can be written

F/nkgT = —In[g:1(1)] — XNZ¢A,1 $B,i -

For the disordered phase, F/nkgT = xNf(1— f). When
dealing with an ordered periodic phase, we minimize this
free energy with respect to its wavelength, D. For CL
phases, there are two wavelengths. By comparing the
free energies for different phases, we obtain the phase
diagram shown in Fig. 1.

The notable aspect of this diagram is that, in addition
to the usual L, H, and C phases [16], there exist G phases.
Unlike the other phases which all extend to the critical
point, the G phases end at triple points; YN = 11.14
with f = 0.452 and 0.548. We could not calculate the
boundaries of the G phases into the strong-segregation
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limit because so many basis functions are required in or-
der to obtain their free energy with accuracy. (We calcu-
late the free energy to a part in 10% using up to 60 basis
functions.) Noting that their stability regions appear to
approach a constant width as x NV increases to 20, we ex-
trapolated their phase boundaries in Fig. 1 to xN =
40 such that the phases remain of constant width and
cover the L-H transitions which we could calculate. At
f = 0.37, this new gyroid phase is stable for x/N = 14.9 to
20.4 which agrees well with measurements for a PS/PI di-
block [10] which find the region to extend approximately
from x N of 16 to 20. Near the G-L transition, the ratio
of the characteristic length of the G phase to that of the
L was measured to be 500 A/210 A= 2.4 which agrees
with our value of 2.45.

In addition to the G phase, we find several other phases
which compete for stability along the metastable L-H
transition at intermediate segregation. For f = 0.37
and xN = 18.496 where both the L and H have free
energies of F/nkgT = 3.7926, the G, monocontinuous
CL, and OBDD phases have energies of 3.7856, 3.7898,
and 3.8040, respectively. We find two monocontinuous
catenoid-lamellar phases nearly degenerate in their free
energies. In both phases, the tubes which connect the
majority-component lamellae are arranged triangularly,
and stagger between adjacent layers. One phase has an
abab... stacking and the other an abcabe.... Examining
them at weaker segregation, we find the former CL,; to
be slightly favored. No solution is found for a CL, phase
with aligned holes. In both staggered phases, the layer
spacing is very close to that of the L phase, and both
phases have nearly identical hole spacings. The ratio of
the hole spacing to the lamellar spacing varies between
1.32 and 1.36 in the region where we find them to be
nearly stable. While this is somewhat larger than the two
measurements that we are aware of for diblocks, 1.02 [2]
and 1.1 [4], it is smaller than the value, 1.49, measured

40

30 -

xN 20 -

FIG. 1. Phase diagram showing regions of stability for the
disordered (D), lamellar (L), gyroid (G), hexagonal (H), and
cubic (C) phases. All transitions are first order except for
the critical point which is marked by a dot. Dashed lines are
extrapolated phase boundaries.
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for a diblock-homopolymer mixture in Ref. [5]. The posi-
tion in the phase diagram where these phases are nearly
stable is also consistent with experimental observations,
f = 0.34 [2], 0.35 [4,6], and 0.33 [5]. Up to the above
value of xN, the OBDD phase did not become stable
even with respect to L and H phases. However, a cal-
culation for large xN by Olmsted and Milner [18] shows
that the OBDD phase does become stable with respect
to the L and H phases, but they did not compare it to
the G and CL phases.

In the weak-segregation limit, we find that bicontinu-
ous catenoid-lamellar phases are nearly stable along the
L-H transition where f is close to 0.5. At the triple
point where the L, H, and G phases each have a free
energy of F/nkgT = 2.75272, the bicontinuous CLgp.
and CL,, phases have energies of 2.753 58 and 2.754 08,
respectively. We do find a solution for a bicontinuous
CL. phase with aligned holes, but it does not exist at
the triple point; when it does exist, its free energy is
significantly higher than the two with staggered holes.
At the triple point, the ratios of the hole spacing to the
lamellar spacing for the CL,p. and CL,; phases are 1.225
and 1.168, respectively. These phases are consistent with
the one observed by Thomas et al. [1] for a PS/PB di-
block with f = 0.46. It may also be the phase observed
by both Almdal et al. [6] and Hamley et al. [4] for a
PEP/PEE diblock, which they have labeled as phase (c).
Such a phase is suggested because its bicontinuity would
explain the large dynamic elastic modulus. The other
phase (b) which they observe has a significantly smaller
elastic modulus. They postulate that it is a hexagonally
moduated lamellar phase. Because we find such phases
to be most unstable, we suspect that they observed in-
stead the monocontinuous CL phase which we find very
close to being stable.

Our calculation ignores fluctuations. Their effects,
while small in general [14,19], can be important close to
the transition from the disordered phase [20], and might
result in direct transitions from the disordered to the G
phase. Further, in light of our results that CL phases are
close to being stable, it would be useful to assess whether

they can be stabilized either by fluctuations, or by small
sheer stresses, such as those applied in Refs. [4] and [6].
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