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Isotropic Lifshitz Behavior in Block Copolymer-Homopolymer Blends

Frank S. Bates,* Wayne Maurer, Timothy P. Lodge, Mark F. Schulz, and Mark W. Matsen
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455

Kristoffer Almdal and Kell Mortensen

Risp National Laboratory, DK-4000 Roskilde, Denmark
(Received 27 September 1995)

A series of mixtures composed of a symmetric A-B diblock copolymer and a symmetric blend of A
and B homopolymers was investigated by small-angle neutron scattering. Mean-field theory predicts
that a line of lamellar-disorder transitions with wave-vector instability ¢* > 0 will meet a line of critical
points with g = 0 in the three-component mixture at an isotropic Lifshitz point. Mean-field Lifshitz
behavior (y =1 and v = 41) was observed in the disordered state at the anticipated composition to

within 1 K of the phase transition.

PACS numbers: 61.41.+¢, 61.12.Ex, 64.60.Cn, 64.70.Kb

Fundamental to the study of critical transitions, where
a system orders as a field (i.e., temperature) is varied, is
the categorization of distinct universality classes. Each
class possesses a unique set of critical exponents that
describes how the various measurable quantities scale as
the transition is approached. Two decades ago Hornreich,
Luban, and Shtrikman [1] addressed the critical behavior
that occurs when a wave-vector instability ¢ in the ordered
state evolves continuously from a fixed value qp, as an
appropriate nonordering field is varied. Here, the locus of
critical transitions, the A line, is divided into q* = qq and
q" # qo branches by a special multicritical point denoted
as the Lifshitz point (LP) with its own set of characteristic
exponents. A general review of Lifshitz phenomena has
been presented by Selke [2]. LP behavior has been sug-
gested for a variety of systems including liquid crystals
[3.4], ferroelectrics [5], magnets [6], microemulsions [7],
polyelectrolytes [8], and block copolymer-homopolymer
mixtures [9,10]. To our knowledge an isotropic LP (m =
d, where m represents the number of dimensions in which
the wave-vector instability occurs and d is the space
dimension) has never been realized experimentally. In
this Letter, we report experiments on symmetric diblock
copolymer-homopolymer blends that demonstrate mean-
field isotropic Lifshitz behavior.

The Ginzburg-Landau free-energy density for a symmet-
ric isotropic system described by a scalar (n = 1) order
parameter, ¢ (r), can be represented by

F(p) = ayp® + agp* + ag® + -
+ ca(Vip)? + co(VPg)? + -+, ¢))

where the coefficients, a», a4, ag, ..., C1, C2, ..., are sys-
tem (and temperature, pressure, etc.) dependent [2]. At
an ordinary critical point a, = 0, with all remaining co-
efficients positive. Such a critical point separates a dis-
ordered state from one that is uniformly ordered with
g* = 0. Ferromagnets, binary liquid mixtures, and single-
component fluids display ordinary critical points with well-
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established scaling exponents. At a Lifshitz (critical) point
both a; and c¢; vanish, signaling the incipient develop-
ment of a nonuniform ordered state with finite wave vec-
tor g > 0. Thus the LP is a special type of critical point
that connects three distinct phases: disordered (a; > 0),
uniformly ordered (a; < 0,¢; > 0), and periodically or-
dered (a; < 0,c¢; < 0). Actual physical realizations of
these states include paramagnetic, ferromagnetic, and he-
lical in certain magnetics (n = m = d — 1) [2]; nematic,
smectic-A, and smectic-C in liquid crystal mixtures (n =
m = 2, d = 3) [3,4]; disordered, two-phase, and lamel-
lar in properly constructed block copolymer-homopolymer
mixtures (n = 1, m = d = 3) [9,10] (see Fig. 1).
Isotropic Lifshitz behavior was first proposed for block
copolymer-homopolymer blends by Broseta and Fredrick-
son [9]. A symmetric A-B diblock copolymer contains
Na-p repeat units evenly divided between chemically dis-
tinct A and B blocks. It forms a lamellar phase at low
temperatures with periodicity D = 27 /¢", and disorders
upon heating. Binary mixtures of equal size linear ho-
mopolymers (A + B, where Ny = Ng = N) produce a
symmetric phase diagram that contains an ordinary criti-
cal point at an A volume fraction ¢4, = % Within
mean-field theory, blending the two symmetric systems
connects the homopolymer critical point and the block
copolymer order-disorder transition (ODT) by a A line of
second-order transitions (see Fig. 2); here, ¢ represents
the overall volume fraction of homopolymer. When a =
N/Nj-p < 1, the ¢ = 0 and ¢* > O branches of the A
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FIG. 1. Ordered state of a block copolymer-homopolymer
blend. The lamellar microstructure, ¢g* > 0, reduces to two-
phase coexistence in the limit of g* = 0.
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FIG. 2. Phase diagram for the block copolymer-homopolymer
blends in terms of temperature and homopolymer volume frac-
tion. Open and filled circles denote experimental phase transi-
tions between ordered and disordered states measured by SANS
and rheology, respectively. Theoretical phase boundaries are
shown with solid lines. The diamond denotes the Lifshitz point
(LP) below which an unbinding transition (UT) separates lamel-
lar and two-phase regions.

line meet at a LP, as illustrated in Fig. 2 for &« = 0.208.
(Theory predicts a tricritical point when « > 1 and a
Lifshitz tricritical point when ¢ = 1 [9,10].) Above the
A line the system is disordered. Adding homopolymer
to the lamellar phase continuously increases D (i.e., de-
creases ¢*), up to the unbinding transition (UT) where
the system separates into two phases. We have calculated
the UT that appears in Fig. 2 using self-consistent mean-
field theory [11]. One end of the UT terminates at the
LP, and the other intersects a three-phase envelope (well
below the low-temperature limit of Fig. 2) where swollen
lamellae (g* > 0), A-rich (¢* = 0), and B-rich (¢* = 0)
regions coexist.

This picture ignores the effects of fluctuations that are
known to destroy the second-order character of the ODT
[12—14]. Moreover, the isotropic LP has an upper critical
dimension d,, = 8 [1], whereas claims for the lower critical
dimension vary: d¢ = 1 [15], d¢ = 2 [16], and d¢ =
4 [17]. Nevertheless, fluctuation effects are generally
suppressed in polymer melts (the Ginzburg parameter
scales as N~1/3, N~ and N =%/ for diblock copolymers,
binary homopolymer mixtures, and the associated LP,
respectively [10]) making the three-component system
illustrated in Fig. 1 an ideal candidate for investigating
isotropic Lifshitz behavior.

Nearly monodisperse (M,,/M, < 1.05) polyethylene
(PE) and poly(ethylenepropylene) (PEP) homopolymers
were synthesized using standard techniques [18], yielding
Npg = 392 and Npgp = 409 calculated based on a four-
carbon repeat unit, subject to approximately 5% error.
Small-angle neutron scattering (SANS) measurements
have established a critical temperature of 7, = 406.9 =
0.5 K and a critical composition of ¢pg,. = 0.50 =
0.03. The Flory-Huggins segment-segment interaction
parameter used in computing the phase diagram shown
in Fig. 2, y = 6.827 ! — 0.0118, was determined from
SANS data obtained with a ¢ppg = 0.50 mixture above T,
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using established procedures [19]. This symmetric blend
displayed mean-field behavior to within 1 K of the critical
temperature.

The PE-PEP diblock copolymer used in this study has
been described in a recent publication [20]. It contains
a deuterated PE block with Npg-pep = 1925(*+5%), and
has an ODT at 412 = 1 K. The value ¢« = 0.208 used in
preparing Fig. 2 was obtained from N = (NpgNpgp)'/?
and Npg-pep. Polymer blends were coprecipitated from a
good solvent and dried under vacuum.

The A line was determined by SANS and rheological
measurements, and the results are included in Fig. 2. Dis-
ordering of lamellae is accompanied by a significant drop
in the dynamic elastic modulus, G’, which provides a con-
venient means of locating the ODT [14,20]. This method
was used to identify Topt for 0 = ¢ = 0.5. SANS ex-
periments were performed on mixtures with 0.8 = ¢ = 1
at the Risg National Laboratory (Roskilde, Denmark) us-
ing A = 10.6 A wavelength neutrons (AA/A = 0.09) and
an area detector. Blend specimens were sealed in quartz
cells (I mm path length) and held in a temperature-
controlled (*=0.5 K) brass oven that contained neutron
beam access holes fitted with aluminum foil windows.
This oven assembly was calibrated with a thermocouple
mounted in a sample cell. SANS data were corrected for
transmission, sample thickness, background, and empty
cell scattering, were azimuthally averaged, and placed
on an absolute intensity scale based on a calibrated sec-
ondary standard [19]. These results are presented as a
function of the magnitude of the scattering wave vector
lql = g = 4w A" 'sin(0/2), where 6 is the scattering an-
gle. Here we focus on two of the blends studied.

Figure 3(a) illustrates the scattering intensity, 7(g), ob-
tained from the ¢» = 0.80 blend. At the highest measure-
ment temperature (430.4 K) a broad plateau of intensity
is evident in the low-g regime. As the temperature was
reduced a peak appeared, at first growing slowly with de-
creasing temperature, then rapidly, until between 396.7 and
394.8 K when a higher-order reflection developed. By
390.8 K, three orders of reflections were apparent, con-
sistent with a lamellar morphology. These results indicate
that Topt = 395.8 = 1 K at ¢ = 0.80.

The ¢ = 0.916 mixture did not produce a SANS peak
in the g range examined. Instead, the intensity grew most
rapidly upon cooling at the lowest values of ¢, reminis-
cent of ordinary critical scattering. In general, the struc-
ture function [S(g) o I(g)] for a critical mixture is given
by [7]

S Ng) = 2ay + 2¢1¢® + 2c2¢* + -, 2)

where a», ¢y, and ¢, appear in Eq. (1). In the long
wavelength and ¢ — 1 limits, Eq. (2) takes on the fa-
miliar Ornstein-Zernike form while at the LP composi-
tion, ¢rp = (1 + 2a?)7! [9], ¢; vanishes and S~ '(g)
becomes linear in g¢*. Figure 3(b) illustrates the latter
behavior for the ¢ = 0.916 mixture, which lies within
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FIG. 3. Selected SANS intensities for temperature sequences
at (a) ¢ = 0.800 and (b) ¢ = 0.916. The development
of a peak at g* > 0 followed by high-order reflections in
(a) confirms a disorder-lamellar transition, while the linear
dependence on ¢* (solid lines) in (b) indicates ¢; = 0 in
Egs. (1) and (2), consistent with Lifshitz behavior.

2
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experimental error of the calculated ¢ p. We have ex-
tracted S 1(0) and the correlation length ¢ = (4¢y/as)'/*
[7] from the intercepts and slopes, respectively, of these
linear data. Both ¢ and ¢* terms were necessary to model
the ¢ = 0.96 SANS data while the ¢ = 1 mixture pro-
duced Ornstein-Zernike scattering (not shown). Figure 4
(inset) illustrates that S~'(0) is linear in 77! over the en-
tire experimental range, extrapolating to Tpp = 399.2 K.
Between 399.7 and 398.7 K the form and temperature
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FIG. 4. Logarithmic plots of the correlation length (£) and
zero-angle scattering intensity [/(0)] in terms of reduced
temperature for ¢ = 0.916, yielding the exponents v and v,
respectively. T p is obtained from the inset. The mean-field

Lifshitz (critical) point exponents are y = 1 and v = %.

dependence of S7'(g) changed significantly, suggesting
that the system had crossed the A line, within 1 K of the
mean-field LP. The critical exponents, v = 1.01 = 0.02
and v = 0.24 * 0.01, were obtained using 7y p as shown
in Fig. 4. These values are consistent with mean-field
isotropic Lifshitz behavior, v = 1 and v = % [1,10].

Both the form of the A line (i.e., a minimum in Topr
for 0 < ¢ < ¢rLp) and the actual Lifshitz point (LP)
composition are anticipated by the mean-field theory of
Broseta and Fredrickson [9]. (The absolute deviation
in Topr between theory and experiment may reflect a
quantitative failure of the former, although the disparity
is barely outside the experimental errors associated with
Nj-g and N.) However, we cannot claim that an isotropic
Lifshitz point actually exists at the extrapolated mean-
field value Tpp. The UT that emerges from the LP
cannot survive the effects of fluctuations that will be
encountered at the A line. The lamellar phase near the
unbinding transition consists of alternating domains rich
in homopolymer separated by diblock monolayers. Mean-
field theory suggests that the A and B domains swell to
macroscopic dimensions as the UT is approached while the
thin diblock monolayers remain flat, parallel, and equally
spaced. (The UT occurs when the lamellar phase has
been reduced to two domains.) This progression cannot
continue for domain spacings, D, much larger than the
persistence length of the diblock monolayer [21]. Instead,
a transition will occur where the monolayers disorder,
producing a channel of structured disordered phase (i.e.,
microemulsion [7]) that covers the UT and the LP. This
would preclude a true Lifshitz point and imply that d¢y = 3
for this class of mixtures.

This work has demonstrated the utility of block
copolymer-homopolymer mixtures in the pursuit of
Lifshitz behavior. Our results revealed mean-field be-
havior remarkably close to an apparent Lifshitz critical
point. These findings indicate that considerably smaller
molecules should be used if access to fluctuations is de-
sired. This system also provides the unique opportunity
to examine a Lifshitz tricritical point [10] at a = 1,
which is likely to be more stable against fluctuations
because a three-phase window replaces the unbinding
transition in Fig. 2.
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