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ABSTRACT
Well-tempered metadynamics (WTMD) is applied to field-theoretic simulations (FTS) to locate the order–disorder transition (ODT) in
incompressible melts of diblock copolymer with an invariant polymerization index of N̄ = 104. The polymers are modeled as discrete Gaussian
chains with N = 90 monomers, and the incompressibility is treated by a partial saddle-point approximation. Our implementation of WTMD
proves effective at locating the ODT of the lamellar and cylindrical regions, but it has difficulty with that of the spherical and gyroid regions.
In the latter two cases, our choice of order parameter cannot sufficiently distinguish the ordered and disordered states because of the similarity
in microstructures. The gyroid phase has the added complication that it competes with a number of other morphologies, and thus, it might be
beneficial to extend the WTMD to multiple order parameters. Nevertheless, when the method works, the ODT can be located with impressive
accuracy (e.g., ΔχN ∼ 0.01).

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0112703

I. INTRODUCTION

Field-theoretic simulations (FTS) provide a versatile technique
for investigating fluctuation corrections to the self-consistent field
theory (SCFT) of block copolymer melts.1–3 The testing ground
for their development has been linear diblocks, where the copoly-
mer consists of a block of fN A-type segments joined to a block
of (1 − f )N B-type segments. The system is generally modeled as
an incompressible melt of continuous Gaussian chains (i.e., elastic
threads) with pairwise contact forces between the A and B segments,
the strength of which is controlled by the Flory–Huggins χ para-
meter.4 Figure 1 shows the SCFT phase diagram5 for this standard
Gaussian-chain model (GCM) in the conformationally symmetric
case where the A and B segments have the same statistical length, a.
Note that we follow the standard convention of defining segments
to have a common volume of ρ−1

0 . As originally demonstrated by
Fredrickson and Helfand,6 fluctuation corrections are controlled by
the invariant polymerization index, N̄ = a6ρ2

0 N. The main effect of
fluctuations is to stabilize the disordered phase, which shifts the
order–disorder transition (ODT) to higher χN. The dashed curve in

Fig. 1 shows the shift for N̄ = 104,7 which is close to the upper limit
accessible to experiments.8

The field-theoretic Hamiltonian for a diblock copolymer melt
takes the form3

βH f [W−, W+] = −n ln Q[W−, W+]

+ ρ0 ∫ (
χb

4
+

W2
−(r)
χb

−W+(r))dr, (1)

where β ≡ kBT, n is the total number of molecules, and χb con-
trols the bare interaction between A and B segments. Q[W−, W+]

is the single-chain partition function in a system of non-interacting
diblock copolymers, where the A and B segments are acted upon
by the external fields W+(r) +W−(r) and W+(r) −W−(r), respec-
tively. Thus, the first term in Eq. (1) is simply the free energy of
the non-interacting system in units of kBT, while the second term
accounts for the A/B interactions.

In SCFT, the free energy of the melt is approximated by
F = H f [w−,w+], where w−(r) and w+(r) denote the saddle point
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FIG. 1. Phase diagram for conformationally symmetric diblock copolymer melts,
calculated using SCFT.5 The ordered phases are lamellar (L), Fddd (O70), gyroid
(G), cylindrical (C), and spherical (S). The dashed curve shows the fluctuation-
corrected ODT for N̄ = 104, calculated using FTS.7

of the Hamiltonian. The saddle point is obtained by solving the
self-consistent conditions DH f /DW− = DH f /DW+ = 0, where

β
ρ0

DH f

DW−

= ϕ− +
2
χb

W−, (2)

β
ρ0

DH f

DW+

= ϕ+ − 1. (3)

Here, ϕ
+
(r) is the total polymer concentration and ϕ

−
(r) is the

difference between the A and B concentrations (i.e., the composi-
tion) in the non-interacting system. In FTS, one instead simulates
the field-theoretic Hamiltonian. Note, however, that W+(r) is imag-
inary valued, and consequently, H f [W−, W+] is complex valued,
which precludes standard simulation techniques.

Lennon et al.9 previously calculated the shift of the ODT using
complex Langevin simulations (CL-FTS),10 where both fields fluc-
tuate in the complex plane. In that work, the ODT was located by
evaluating the relative free energy of the ordered and disordered
phases using thermodynamic integration (TI). However, the simu-
lations were limited to an unrealistically large value of N̄ = 5.4 × 105

due to a numerical instability, which poses a potential problem for
all complex Langevin simulations.11 Furthermore, Lennon et al. did
not account for an ultraviolet (UV) divergence,9 which occurs as the
resolution of the spatial grid used to represent the fields becomes
increasingly fine, thereby, in effect, reducing the range of the inter-
actions. In any case, Delaney and Fredrickson13 have since shown
that these TI calculations were, in fact, inaccurate.

Delaney and Fredrickson not only improved the accuracy of
the TI but also tamed the instability and removed UV divergence
by introducing compressibility and smearing the concentrations (or,
equivalently, smearing the interactions). This allowed them to gen-
erate a phase diagram for a more realistic N̄ ≈ 104. Although the
UV divergence was removed, they did not calibrate their interac-
tion parameter to account for the smearing, which is necessary to
make quantitative comparisons with the SCFT phase diagram in

Fig. 1. Even still, there were qualitative differences with respect to
experiments. First, the fluctuation corrections were insufficient to
produce direct gyroid–disorder transitions,8 and second, the fluctu-
ations destroyed the Fddd phase.14,15 This was likely a result of too
much smearing.2

An alternative strategy in FTS is to perform a partial saddle-
point approximation,16,17 where W−(r) fluctuates while W+(r)
follows its saddle point, w+(r). The rationale is that the com-
position fluctuations presumably dominate those of the pressure
field, and indeed, the approximation appears accurate, at least, for
N̄ ≳ 103.2,17,18 An advantage of the partial saddle-point approxima-
tion is that w+(r) is real valued, which allows for the use of standard
Langevin simulations (L-FTS),19 thereby avoiding the instability of
CL-FTS. The fluctuation-corrected ODT in Fig. 1 is a result of
this particular variant of FTS.7 Consistent with experiments, L-FTS
predict direct gyroid–disorder transitions and a stable Fddd phase.

To avoid the numerical inaccuracies that occur when solving
for continuous Gaussian chains, the L-FTS in Ref. 7 modeled the
polymers as discrete Gaussian chains. There is no cost of doing so20

since this modification to the standard GCM can be accounted for,
together with the UV divergence, using the Morse calibration of the
interaction parameter,

χ = z∞χb + c2χ2
b + c3χ3

b + ⋅ ⋅ ⋅ , (4)

originally devised for particle-based simulations.21–24 The first coef-
ficient, z∞, is the relative number of intermolecular contacts in the
limit of χb → 0 and N →∞, which can be calculated analytically.3,7,20

The remaining coefficients are determined by fitting the peak of
the disordered-state structure function, S(k∗), to renormalized
one-loop (ROL) predictions.25,26 However, for N̄ = 104, the linear
approximation, χ ≈ z∞χb, is reasonably accurate.3,7

Although the L-FTS in Ref. 7 produced ODTs consistent with
experiments, the simulations were highly computational. Thermo-
dynamic integration was found to be insufficiently accurate, and
so the ODT was located by examining the disappearance of Bragg
reflections in the ordered-state structure function, S(k), which
required a series of long simulations. Here, we demonstrate a more
efficient approach using well-tempered metadynamics (WTMD),27

as previously applied to particle-based simulations.22,23,28

II. FIELD-THEORETIC SIMULATIONS
Our FTS follow the implementation in Ref. 7, where the

polymers are modeled as discrete chains consisting of N beads
(i.e., monomers) connected by springs (i.e., bonds). The first NA
monomers are A-type, and the remaining NB = N −NA monomers
are B-type, resulting in a composition of f = NA/N. The bonds are
harmonic with a statistical length of a such that the unperturbed
end-to-end length of the entire polymer is R0 = a

√
N in the large-

N limit. Although the monomers are treated as point particles, they
are each assigned a finite volume of ρ−1

0 . Thus, the total number of
polymers is given by

n =
ρ0V
N
=

V
R3

0

√

N̄, (5)

where V is the volume of the system. The simulations are gener-
ally conducted in an Lx × Ly × Lz orthorhombic box with periodic
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boundary conditions. All spatially dependent quantities are speci-
fied at the vertices of an mx ×my ×mz grid with a regular spacing of
Δα = Lα/mα in each direction α. Hence, the system has a total vol-
ume of V = LxLyLz , while each grid point corresponds to a volume
of Vcell = ΔxΔyΔz .

The statistical mechanics of the non-interacting system
requires a partial partition function, qi(r), for the first i monomers
of a discrete chain with its ith monomer constrained to position r. It
satisfies the recursion relation

qi+1(r) = hi+1(r)∫ g(R)qi(r − R)dR, (6)

subject to the initial condition q1(r) = h1(r).29 Here,

g(R) = (
3

2πa2 )
3/2

exp(−
3R2

2a2 ) (7)

is a Boltzmann weight for the bond potential and

hi(r) = exp(−W+(r) − γiW−(r)) (8)

is a Boltzmann weight for the field acting on the ith monomer, where
γi = 1 for i ≤ NA and γi = −1 otherwise. The calculation also requires
an analogous partial partition function, q†

i (r), for the last N + 1 − i
monomers of the chain, which is obtained by iterating

q†
i−1(r) = hi−1(r)∫ g(R)q†

i (r − R)dR, (9)

starting from q†
N(r) = hN(r). The recursion relations are solved

using fast Fourier transforms.7
Once both partial partition functions have been obtained, the

single-chain partition function is given by

Q[W−, W+] =
1
V ∫

qi(r)q†
i (r)

hi(r)
dr, (10)

which is, in fact, independent of i. We also require the composi-
tion and total concentration in the non-interacting system, which
are given by

ϕ−(r) =
1

NQ

N

∑
i=1

γi
qi(r)q†

i (r)
hi(r)

, (11)

ϕ+(r) =
1

NQ

N

∑
i=1

qi(r)q†
i (r)

hi(r)
, (12)

respectively.
In L-FTS, the composition field fluctuates according to the

dynamics

W−(r; τ + δτ) =W−(r; τ) −
β
ρ0

DH f

DW−(r)
δτ + N (0, στ), (13)

where τ is the simulation time and N (0, στ) provides a random
number generated from a normal distribution of zero mean and

σ2
τ = 2δτ/ρ0Vcell variance. To improve accuracy, we apply the

predictor-corrector algorithm,19,30 and to maximize computational
speed, we use a reasonably optimized time step of δτ = 1/N.7 After
each time step, w+(r) is adjusted using Anderson mixing3,31 to
enforce DH f /DW+ = 0. We note that during the preparation of
our paper, Yong and Kim32 published a more efficient method of
adjusting w+(r) that uses machine learning.

III. WELL-TEMPERED METADYNAMICS
Previous studies have located the ODT by monitoring a col-

lective variable or order parameter, Ψ, but the accuracy was limited
by metastability.33,34 Well-tempered metadynamics (WTMD)27,35,36

overcomes the energy barriers separating the two phases by adding
a biasing potential, U(Ψ), to the Hamiltonian. The resulting
Hamiltonian,

H = H f +U(Ψ), (14)

is then simulated by adding

DU
DW−(r)

= U′(Ψ)
DΨ

DW−(r)
(15)

to the forcing term in Eq. (13).
For WTMD to perform well, one needs to devise an effective

order parameter, which is typically constructed by experimenting
with various options. Morse and co-workers22,23,28 described the
rationale by which they settled on a weighted ℓ-norm of the Fourier
transform of the composition. Here, we convert their particle-based
order parameter to a field-based version,

Ψ =
1

R3
0
(

V
(2π)3 ∫ f (k)∣W−(k)∣ℓdk)

1
ℓ

, (16)

involving the Fourier transform of the composition field,

W−(k) = F[W−(r)] = ∫ W−(r)eik⋅rdr. (17)

Morse and co-workers experimented with different norms, but
found that the ℓ = 4 one performed best. They also found it use-
ful to screen out the large wavevector contributions by selecting a
weighting function of

f (k) =
1

1 + exp(12(k/kc − 1))
. (18)

Following their recommendation, we set kc to 1.4 times the peak
position of the disordered-state structure function, S(k). For this
particular order parameter, the functional derivative in Eq. (15) is
given by

DΨ
DW−(r)

=
VR3(ℓ−1)

0

Ψℓ−1 F −1
[ f (k)∣W−(k)∣ℓ−2W−(k)]. (19)

A WTMD simulation generally begins with U(Ψ) = 0. Once
the system has equilibrated, Gaussians,
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βδU(Ψ) = exp(−
U(Ψ)
kBΔT

) exp(−
(Ψ̂ −Ψ)2

2σ2
Ψ
), (20)

are periodically added to U(Ψ) centered about the instantaneous
value of the order parameter, Ψ̂. The width of the Gaussians, σΨ,
needs to be large enough that U(Ψ) remains reasonably smooth but
not so much so as to smear the relevant features. Although the rate
at which Gaussians are added becomes irrelevant in the long-time
limit,27 it should be sufficiently slow for Ψ to migrate a distance of σΨ
between the addition of Gaussians. We find that 103 Langevin steps
work well. In well-tempered metadynamics, the amplitude of the
Gaussians gradually shuts off at a rate controlled by ΔT. Although
the method is robust with respect to the exact choice, kBΔT should
ideally be similar in size to the energy barrier separating the two
phases.27 Note that the functional derivative of U(Ψ) in Eq. (15)
requires U′(Ψ), and therefore, we also update it along with U(Ψ)
using

δU′(Ψ) = (
Ψ̂ −Ψ

σ2
Ψ
−

U′(Ψ)
kBΔT

)δU(Ψ). (21)

Once the system has reached a well-tempered state, the free
energy as a function of the order parameter is given by27

F(Ψ; χb) = −
T + ΔT

ΔT
U(Ψ) + constant. (22)

A histogram of the order parameter can then be calculated using

P(Ψ)∝ exp(−βF(Ψ; χb)), (23)

which typically produces two peaks, one for each phase. The sta-
ble phase corresponds to the peak with the largest probability, and
thus, the phase transition is located by adjusting χb until the areas
under the two peaks are equal. Provided that the transition is suffi-
ciently close to χb of the simulation, the change in free energy can be
approximated by the linear extrapolation,

F(Ψ; χb + Δχb) = F(Ψ; χb) +
∂F
∂χb

Δχb, (24)

used by Ghasimakbari and Morse.28 The partial derivative of the free
energy is evaluated during the WTMD simulation using

∂F
∂χb
= ⟨

∂H
∂χb
⟩

Ψ

=
ρ0V
4β
−

ρ0

βχ2
b
⟨∫ W2

−(r)dr⟩
Ψ

, (25)

where the partial derivative of the Hamiltonian is averaged over the
configurations of a particular Ψ value. To create a smooth derivative,
we construct two functions, I0(Ψ) and I1(Ψ), in an analogous man-
ner to U(Ψ). At each Ψ̂, we add a Gaussian to I0(Ψ) and a Gaussian
weighted by ∫ W2

−(r)dr to I1(Ψ). At the end of the simulation, the
ensemble average in Eq. (25) is approximated by I1(Ψ)/I0(Ψ).

IV. RESULTS
Our previous study7 estimated the ODT for N̄ = 104 (dashed

curve in Fig. 1) by locating the points where the Bragg reflections
in the ordered-state structure function, S(k), vanish. The method
is highly computational, and furthermore, it is prone to inaccura-
cies due to the metastability of the ordered phases. Here, we test the
WTMD method on four of the compositions corresponding to the
lamellar (L), cylindrical (C), spherical (S), and gyroid (G) phases. As
before, we use the linear approximation χ = z∞χb, given the large
value of N̄.

A. Lamellar–disorder transition
For the L–dis transition, we select a composition of NA = 40

and NB = 50. Our previous study found an ODT of (χN)ODT
= 13.15 ± 0.05 in a cubic simulation box of size L = 4.38R0, which
was optimized for three lamellar periods. The fields were represented
on a 40 × 40 × 40 grid, for which the ratio of the effective and bare
interaction parameters is z∞ = 0.767.

Using these same conditions, we perform WTMD with
the ℓ = 4 version of the order parameter used by Morse and

FIG. 2. (a) Bias potential, U(Ψ), and (b) derivative of the free energy,
∂F(Ψ; χ)/∂χ, from a WTMD simulation for NA = 40, NB = 50, and χN = 13.15.
Both quantities are plotted after every 106 Langevin steps. The insets in (a) show
sample configurations from the two peaks of U(Ψ).
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co-workers.22,23,28 On the basis of several trial runs, the disordered
and lamellar phases occur at Ψ ≈ 400 and 800, respectively, and they
are separated by an energy barrier of about 5kBT. Guided by these
findings, we perform a long WTMD simulation of 5 × 106 Langevin
steps with σΨ = 40 and ΔT/T = 5. Figure 2 shows the resulting bias
potential, U(Ψ), and free energy derivative, ∂F/∂χ, after every 106

steps. The bias potential quickly develops two peaks matching the
expected positions, and visual inspection of the configurations (see
the insets) confirms that the peaks do, indeed, correspond to the dis-
ordered and lamellar phases. Note that the lamellae form in either
the (300) or (221) orientation, both of which result in the same
lamellar period of D = L/3. Although we perform 5 × 106 steps, the
shape of U(Ψ) and the derivative ∂F/∂χ are reasonably accurate
after the first 106 steps.

Figure 3(a) plots the histogram of the order parameter as the
number of Langevin steps increases. Even though the shape of U(Ψ)
is relatively static after 106 steps, the histogram continues to fluctuate
significantly. Nevertheless, when extrapolated to the point where the
two peaks have equal areas (i.e., the ODT), the resulting histogram

FIG. 3. Histogram of the order parameter, P(Ψ), at (a) the χN = 13.15 of the
simulation and (b) the estimated (χN)ODT plotted in the inset as the number of
Langevin steps is increased.

shown in Fig. 3(b) is also relatively static. Furthermore, the extrap-
olated values of χN plotted in the inset are nicely consistent with an
ODT of (χN)ODT = 13.14 ± 0.01. Not only does this match our pre-
vious estimate using S(k), but also this new estimate from WTMD
is much more precise.

Given that χN of our simulation and that of the projected
ODT differ by only 0.01, Fig. 3 does not provide a particularly
compelling test of the extrapolation in Eq. (24). Therefore, we run
two more WTMD simulations, one below the ODT at χN = 13.11
and another above at χN = 13.19. Figure 4(a) compares the resulting
histograms, P(Ψ), to that of χN = 13.15. The comparison illus-
trates that the histograms are exceptionally sensitive to the value
of χN, which bodes well for the potential accuracy of the method.
Figure 4(b) then extrapolates the three histograms to the point
where their peaks have equal areas. The agreement among the
resulting histograms and among the corresponding estimates of
(χN)ODT plotted in the inset confirm that the extrapolation works
well.

Our previous estimates of the ODT based on the structure func-
tion, S(k), found that the optimum size of the simulation box is ∼1%

FIG. 4. Histograms of the order parameter, P(Ψ), from three different simulations
plotted at (a) the χN of the run and (b) the estimated (χN)ODT shown in the inset.
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FIG. 5. ODT estimates for different box sizes (symbols) fit to a parabola (solid
curve). The arrow denotes three times the equilibrium lamellar period predicted by
SCFT at χN = 13.12.

larger than the SCFT prediction.7 We now repeat the optimization
with WTMD by calculating (χN)ODT for a range of different box
sizes. Disregarding small boxes exhibiting occasional instances of the
(220) orientation and large boxes exhibiting the (310) orientation,
Fig. 5 plots the ODTs from the simulations that only formed (300)
and (221) lamellar orientations. The solid curve denotes a parabolic
fit, which provides a more accurate ODT of (χN)ODT = 13.12 ± 0.01,
corresponding to an optimum box size of L = 4.30R0. This time, the
optimum box size is about 1% smaller than the three lamellar periods
of SCFT (DSCFT = 1.448R0).

B. Cylindrical–disorder transition
We now turn our attention to the C–dis transition for NA = 30

and NB = 60. Our previous study estimated an ODT of (χN)ODT
= 14.85 ± 0.05. That study used a simulation box with a cross-
sectional area of 4.78R0 × 5.52R0, optimized for six unit cells,
and a longer dimension in the direction of the cylinder axes. In
WTMD simulations, the cylinders need to form spontaneously. To
help facilitate this, we set Lx = Ly = 4.78R0 and Lz = 5.52R0, which
should allow the cylinders to form in either the x or y direc-
tion. The fields are represented on a 48 × 48 × 48 grid, for which
z∞ = 0.752.

Figure 6(a) shows the resulting bias potential from a WTMD
simulation at χN = 14.85 after every 106 Langevin steps for para-
meters of ℓ = 4, σΨ = 4, and ΔT/T = 2.5. Again, there are two peaks,
one at Ψ ≈ 1100 corresponding to disordered configurations and
another at Ψ ≈ 1160 corresponding to ordered cylinders (see the
insets). As expected, the ordered phase switches between cylinders in
the x and y directions. This time, it takes about 2 × 106 steps for the
shape of U(Ψ) to converge, but, nevertheless, we continue the simu-
lation for 6 × 106 steps. The derivative ∂F/∂χ, shown in Fig. 6(b), is
reasonably accurate after 106 steps, apart from the extremes, which
are not important.

Figure 7(a) plots the histogram, P(Ψ), as the number of
time steps increases. As mentioned before, the relative size of
the two peaks fluctuates significantly with time. Nevertheless, the

FIG. 6. (a) Bias potential, U(Ψ), and (b) derivative of the free energy,
∂F(Ψ; χ)/∂χ, from a WTMD simulation for NA = 30, NB = 60, and χN = 14.85.
Both quantities are plotted after every 106 Langevin steps. The insets in (a) show
sample configurations from the two peaks of U(Ψ).

extrapolation of the histogram to equal-sized peaks, plotted in
Fig. 7(b), is well converged after 3 × 106 Langevin steps. From the
extrapolated values of χN shown in the inset, we obtain an ODT
of (χN)ODT = 14.87 ± 0.01. Again, this is consistent with and more
precise than our previous estimate based on S(k).

C. Spherical–disorder transition
Next, we consider the S–dis transition for NA = 24 and NB = 66.

From the disappearance of Bragg reflections in S(k), our previous
study estimated an ODT of (χN)ODT = 18.05 ± 0.05. Those simula-
tions were conducted in a cubic box of size L = 5.71R0, which was
optimized for 27 bcc unit cells. The grid was set to 48 × 48 × 48,
which leads to z∞ = 0.790.

In this case, the ℓ = 2 version of the order parameter in
Eq. (16) is found to be more effective than the ℓ = 4 version in dis-
tinguishing the ordered and disordered phases. As demonstrated
in Fig. 8(a), there is still relatively little separation between the
Ψ ≈ 7.15 of the disordered phase at χN = 18.0 and the Ψ ≈ 7.35 of the
spherical phase at χN = 18.1. The lack of separation does not bode
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FIG. 7. Histogram of the order parameter, P(Ψ), at (a) the χN = 14.85 of the
simulation and (b) the estimated (χN)ODT plotted in the inset as the number of
Langevin steps is increased.

well for WTMD, but, nevertheless, we attempt a WTMD simula-
tion at χN = 18.05 using σΨ ≈ 0.015 and ΔT/T = 1. As suspected, the
bias potential, U(Ψ), plotted in Fig. 8(b) fails to generate separate
peaks for the spherical and disordered phases. Interestingly though,
U(Ψ) develops a shoulder at Ψ ≈ 7.6 after 2 × 106 Langevin steps.
Visual inspection of the configurations reveals cylindrical minority
domains.

Our previous study7 had, in fact, observed an epitaxial C↔ S
transition37 at (χN)OOT = 18.15 ± 0.05. Indeed, Fig. 8(a) confirms
that the position of the shoulder coincides with the average value
of Ψ obtained from the cylindrical phase at χN = 18.2. To locate the
order–order transition, we run two additional WTMD simulations
at χN = 18.15 and 18.2. Given the larger separation between the C
and S phases, we increase the width of the Gaussians to σΨ = 0.04.
The resulting biases plotted in Fig. 9 illustrate that S is still favored
at the lower segregation, but C becomes more stable at the higher
segregation. Extrapolations predict (χN)OOT = 18.17 ± 0.01, which
is again consistent with and more accurate than the estimate based
on S(k).7

FIG. 8. (a) Order parameters of the disordered, S, and C phases for NA = 24 and
NB = 66 during FTS at χN = 18.0, 18.1, and 18.2, respectively. (b) Bias potential,
U(Ψ), after every 106 Langevin steps during a WTMD simulation at χN = 18.05.

FIG. 9. Bias potentials, U(Ψ), bracketing the epitaxial C ↔ S transition for
NA = 24 and NB = 66.
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D. Gyroid–disorder transition
We conclude our study by testing WTMD on the G–dis tran-

sition for NA = 36 and NB = 54. Our previous study estimated an
ODT of (χN)ODT = 13.75 ± 0.05 using a simulation box optimized
for eight unit cells. However, this is too large for the gyroid phase
to spontaneously form within a reasonable simulation time, and so
we reduce the box to an optimal size, L = 3.689R0, for one unit cell
and set the grid to 32 × 32 × 32, for which z∞ = 0.782. Naturally, this
will amplify finite-size effects, potentially shifting the ODT to some
degree. Therefore, we repeat the simulations in Ref. 7, where χN is
reduced until the Bragg reflections of the G phase vanish. As evident
from Fig. 10, the transition for the smaller system does occur at a
slightly reduced (χN)ODT = 13.55 ± 0.05.

As was the case for the S–dis transition, the ℓ = 2 version of Ψ
plotted in Fig. 11(a) is better able to distinguish the gyroid and disor-
dered phases. Even still, the separation in Ψ is again relatively small.
Indeed, the bias potential plotted in Fig. 11(b) for a WTMD simula-
tion at χN = 13.55 with σΨ ≈ 0.025 and ΔT/T = 1 fails to produce
distinct peaks for the ordered and disordered phases. The prob-
lem this time, however, is somewhat more complicated. Not only
are the ordered and disordered phases similar in structure, but also
visual inspection of the configurations reveals that there are other
morphologies competing for stability.

Figure 12 shows the evolution of the order parameter during
the WTMD simulation with the different morphologies identified
every 5 × 104 Langevin steps. In addition to the gyroid phase, we
observe a cylindrical phase, a perforated-lamellar phase, and an
Fddd-like phase. Although a true Fddd phase requires a non-cubic
simulation box of specific dimensions, the system is, nevertheless,

FIG. 10. Structure function, S(k), at a sequence of χN values, calculated for
NA = 36 and NB = 54. For clarity, the curves for the ordered state, exhibiting the
Bragg peaks, are shifted up by factors of 3. The triangles denote the allowed peak
positions for the Ia3d symmetry.

FIG. 11. (a) Order parameters of the disordered and G phases for NA = 36 and
NB = 54 during FTS at χN = 13.5 and 13.6, respectively. (b) Bias potential, U(Ψ),
after every 106 Langevin steps during a WTMD simulation at χN = 13.55.

FIG. 12. Evolution of the order parameter in the WTMD simulation of Fig. 11. The
symbols denote the observed morphology every 5 × 104 Langevin steps.
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able to form a similar network-structure in cubic boxes, as was the
case in our previous study.7

V. DISCUSSION
The previous ODT calculations in Ref. 7 are accurate to within

the linewidths in Fig. 1, and our new calculations are even more pre-
cise. The impressive accuracy of WTMD can be attributed to the fact
that the histogram of the order parameter, P(Ψ), is highly sensitive
to χ, as illustrated in Fig. 4(a). Consequently, however, the method
needs to be performed close to the actual transition. Here, we had
accurate estimates of the ODTs from our previous simulations in
Ref. 7. In the absence of such estimates, it is advisable to first run
scans back and forth across the ODT while monitoring the order
parameter. Not only will the hysteresis loop bracket the ODT, but
also the scans will provide values of the order parameter in the dis-
ordered and ordered phases, which can then guide the choice of
σΨ. Prior to simulation, one does not generally know the size of the
energy barrier separating the two phases to guide the choice of ΔT,
but fortunately, WTMD is not particularly sensitive to its value. In
any case, it is best to underestimate its optimum value, and then,
if necessary, stop and restart the run with a larger ΔT keeping the
previous U(Ψ). The initialization of U(Ψ) is arbitrary,27 but the
simulation does need to run long enough to adequately sample the
relevant range of Ψ. This will generally happen more quickly if ΔT is
increased rather than decreased.

Previous studies7,11,19,34 have demonstrated that the periodicity
of the L and C phases can be determined by comparing the stresses,

σα =
Lα

Q
∂Q
∂Lα

, (26)

in the α = x, y, and z directions, but this does not work for triply peri-
odic phases. Fortunately, though, there is now strong evidence that
SCFT provides an accurate estimate of the equilibrium periodicity in
FTS,19,34 which incidentally also appears to be the case for particle-
based simulations.23,28,38,39 Our results in Fig. 5 not only support this
but also illustrate that the resulting inaccuracy in the periodicity has
little effect on the estimated value of (χN)ODT. However, the SCFT
requires an accurate value of the effective χ, and thus, one may need
to perform the non-linear calibration in Eq. (4) for smaller values
of N̄. We note that Delaney and Fredrickson11,13 found a similar
agreement between CL-FTS and SCFT for the lamellar period, but
this is not equivalent. The former examples involve comparisons to
SCFT predictions of the standard GCM evaluated at the effective χ,
whereas the agreement observed by Delaney and Fredrickson is for
the SCFT of their modified model evaluated at the bare χb.

The challenge with WTMD is finding an order parameter capa-
ble of distinguishing the competing phases. Fortunately, there is a
sufficient change in the morphology when the L and C phases disor-
der. Likewise, the order parameter in Eq. (16) is able to adequately
distinguish the C and S phases. However, as illustrated by the insets
in Fig. 8(a), the morphology of the S phase is too similar to its
disordered counterpart. Both are composed of spherical minority
domains, but in one case, the domains are arranged in a bcc lattice,
while in the other case, they are simply disordered. To overcome this
problem, one would need to devise an alternative order parameter
that is more sensitive to the periodic arrangement of spheres (i.e.,
the Bragg reflections in the structure function), which might be a

suitable task for machine learning.36 Note, however, that the method
would also need to provide the derivative of Ψ with respect to W−(r)
for the Langevin dynamics. Although this necessity could be avoided
by switching to Monte Carlo dynamics, this would greatly reduce the
efficiency of simulations.19

The G–dis transition possesses the same problem in that the
ordered network structure of the G phase transforms into a similar
disordered network that simply lacks any long-range order. How-
ever, in addition to this, G competes with other network phases (e.g.,
PL and Fddd) exhibiting similar values of the order parameter. Con-
sequently, our bias was unable to separate the competing phases.
Again, this could be remedied by an order parameter that is more
sensitive to crystalline symmetry, but it might also help to extend
the WTMD to multiple order parameters.36

Provided that the order parameter can adequately discern the
competing phases, WTMD is able to locate the ODT with remark-
able precision. Not only are its predictions consistent with and more
accurate than the previous ones obtained from S(k),7 but also the
computational cost is much lower. The previous method requires
multiple long simulations of S(k), and furthermore, it has a ten-
dency to underestimate (χN)ODT due to the metastability of ordered
phases. This could be problematic at smaller values of N̄, where
the first-order nature of the ODT is stronger, allowing for greater
degrees of superheating. On the other hand, WTMD can readily
cope with large energy barriers by simply increasing ΔT. In fact,
larger energy barriers produce narrower peaks in P(Ψ), making it
easier to discern the transition.

In our previous study,7 we had difficulty locating the ODT
using thermodynamic integration (TI).9,40 We did, however, man-
age to find a L–dis transition for symmetric NA = NB = 45 diblocks
at (χN)ODT = 12.68, which compares well with the accurate
(χN)ODT = 12.71 ± 0.01 from a WTMD simulation (not shown). To
achieve this level of agreement, the TI had to evaluate the free ener-
gies of the lamellar and disordered phases, FL and Fdis, to an accuracy
of ±10−4nkBT, which required a relative accuracy of one part in 104

for the free energy derivatives used in the TI. At asymmetric com-
positions, where the ordered and disordered phases are less distinct,
the relative accuracy would need to be even greater.

Fredrickson and Delaney11 have recently proposed a direct
method of evaluating the free energy, which is much less compu-
tational than TI. The method is based on the identity

F = Lα
∂F
∂Lα
− VLα

∂

∂Lα
(

F
V
). (27)

Assuming the thermodynamic limit (i.e., F ∝ V), the second
derivative can be neglected, and thus, the free energy can be
approximated by

F = Lα⟨
∂H f

∂Lα
⟩, (28)

where the derivative of F is obtained by averaging the derivative of
H f from a FTS. To test this expression, we evaluate the free ener-
gies of the lamellar and disordered phases for symmetric diblocks at
χN = 12.71, where we would expect FL = Fdis. To account for the UV
divergence, we remove its free energy contribution,
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FUV = −
MkBT

2
ln(

χbM
Vρ0
), (29)

from the Hamiltonian (i.e., Hf → Hf − FUV) and differentiate Hf
at constant effective χ.41 The resulting free energies are FL
= 3.1368 nkBT and Fdis = 3.1349 nkBT. A linear extrapolation of
the free energies using the derivatives from Ref. 7 gives (χN)ODT
= 12.95. Although this is a reasonable estimate of the ODT, it is less
accurate than the one from TI. Unlike TI where there are only sta-
tistical and numerical inaccuracies, this direct method of calculating
free energy has additional inaccuracies resulting from its reliance on
the assumptions that F ∝ V and χ = z∞χb.

In reality, order–disorder transitions, particularly the S–dis and
G–dis ones, will be challenging to locate for any method based
on either order parameters or free energies. However, we expect
this to be the exception rather than the rule. For most transitions,
the morphologies of the competing phases will have distinguish-
ing characteristics that can be readily discerned by an appropriate
order parameter. Indeed, we have started applying WTMD to block
copolymer blends in a grand-canonical ensemble using the blend
composition as the order parameter, and it is working exceptionally
well.

VI. SUMMARY
Well-tempered metadynamics (WTMD) was applied to field-

theoretic simulations (FTS) to locate order–disorder transitions
(ODTs) of AB diblock copolymer melts with an invariant polymer-
ization index of N̄ = 104. The simulations modeled the polymers as
chains of N = 90 discrete monomers connected by harmonic springs
with contact interactions between the A and B monomers of strength
χb. A partial saddle-point approximation was applied to the pressure
field enforcing incompressibility, which facilitated the use of con-
ventional Langevin dynamics. The results of the simulations were
then mapped onto the standard Gaussian chain model (GCM) using
a linear approximation, χ ≈ z∞χb, for the effective Flory–Huggins
parameter.

The WTMD is performed by periodically adding narrow Gaus-
sians to a bias potential, U(Ψ), at the instantaneous value, Ψ̂, of
an appropriate order parameter, Ψ. As the bias develops, the sys-
tem is able to overcome the energy barrier separating the competing
phases. By gradually decreasing the amplitude of the Gaussians,
the system eventually reaches a well-tempered state, where the free
energy as a function of the order parameter, F(Ψ; χ), is given by
Eq. (22). Using Eq. (23), one can then calculate a histogram of the
order parameter, P(Ψ), which generally exhibits separate peaks for
the competing phases. The phase transition can then be located by
adjusting χ until the coexisting phases occur with equal probabil-
ity or, in other words, until their peaks are of equal area. Provided
that the simulation is run sufficiently close to the transition, the
adjustment in χ can be performed using the linear extrapolation in
Eq. (24).

The method worked particularly well for the lamellar–disorder
transition on account of the fact that our choice of Ψ in Eq. (16)
can clearly distinguish the competing phases. Given the depen-
dence of (χN)ODT on the size of the simulation box in Fig. 5, it
appears that the equilibrium periodicity of an ordered phase can
be adequately approximated by SCFT. Although Ψ is less effective

at distinguishing the cylindrical and disordered phases, it was still
able to locate the ODT. However, this was not the case for the
spherical and disordered phases because of the similarity of their
morphologies. Nevertheless, the WTMD was able to locate a nearby
OOT between the spherical and cylindrical phases. The order para-
meter also struggled to distinguish the gyroid and disordered phases,
which was further complicated by the presence of other metastable
morphologies in the complex phase window.

The similarity between ordered and disordered phases poses a
problem not just for WTMD but also for free-energy approaches. In
the case of WTMD, however, this could perhaps be remedied by con-
structing order parameters with the help of machine learning and by
employing multiple order parameters. When the order parameter
is able to adequately discern the competing phases, transitions can
be located with remarkable precision due to the strong dependence
the histogram has on the system parameters. As such, WTMD will
undoubtedly become a valuable tool in FTS.

SUPPLEMENTARY MATERIAL

See the supplementary material for the computer source code
used to produce the data for this study.
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