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ABSTRACT
This study examines the ultraviolet (UV) divergence in field-theoretic simulations (FTSs) of block copolymer melts, which causes an unphys-
ical dependence on the grid resolution, Δ, used to represent the fields. Our FTSs use the discrete Gaussian–chain model and a partial
saddle-point approximation to enforce incompressibility. Previous work has demonstrated that the UV divergence can be accounted for
by defining an effective interaction parameter, χ = z∞χb + c2χ2

b + c3χ3
b + ⋅ ⋅ ⋅ , in terms of the bare interaction parameter, χb, used in the FTSs,

where the coefficients of the expansion are determined by a Morse calibration. However, the need to use different grid resolutions for different
ordered phases generally restricts the calibration to the linear approximation, χ ≈ z∞χb, and prevents the calculation of order–order transi-
tions. Here, we resolve these two issues by showing how the nonlinear calibration can be translated between different grids and how the UV
divergence can be removed from free energy calculations. By doing so, we confirm previous observations from particle-based simulations. In
particular, we show that the free energy closely matches self-consistent field theory (SCFT) predictions, even in the region where fluctuations
disorder the periodic morphologies, and similarly, the periods of the ordered phases match SCFT predictions, provided the SCFT is evaluated
with the nonlinear χ.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0134890

I. INTRODUCTION

Block copolymers are a special class of polymers, where the
chain is divided into chemically distinct blocks.1 The simplest is
the AB diblock architecture, where the chain consists of a block
of NA A-type segments, joined to a block of NB B-type segments.
Due to the general immiscibility of dissimilar components, a melt
of diblock copolymers will tend to segregate into A- and B-rich
domains. However, the domains remain microscopic in size, due to
the connectivity of the blocks, resulting in the formation of period-
ically ordered microstructures. Figure 1 shows a theoretical phase
diagram for diblock copolymer melts. The ordered microstructures
form once χN ≳ 10, where N = NA +NB and χ is the Flory–Huggins
parameter, measuring the incompatibility of the A and B compo-
nents. The geometry of the microstructure is generally controlled by

the composition of the diblock, f = NA/N. The stable microstruc-
tures include the classical lamellar, cylindrical, and spherical phases,
as well as two network phases, referred to as gyroid4,5 and Fddd.6,7

The phase behavior of block copolymer melts is understood to
be universal,8–11 meaning that all chemically distinct molecules and
theoretical models become equivalent at large N. As such, they can
all be mapped onto the standard Gaussian–chain model (GCM),12

which treats the system as an incompressible melt of continuous
elastic threads, interacting with pairwise contact forces. In the case
of a diblock copolymer melt, the polymer paths are denoted by
space curves, rα(t), where α ∈ {1, 2, . . . , n} labels the polymers, and
t ∈ [0, N] indexes the segments along the polymer contours. The
Hamiltonian for the GCM,

Hp[{rα}] = Ub[{rα}] +Uint[{rα}], (1)
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FIG. 1. Phase diagram for diblock copolymer melts, calculated using SCFT.2 The
ordered phases are lamellar (L), Fddd (O70), gyroid (G), cylindrical (C), and spher-
ical (S). The dashed curve shows the fluctuation-corrected ODT for N̄ = 104,
calculated using FTSs.3

can be split into bonded interactions,

Ub

kBT
=

3
2a2

n

∑
α=1
∫

N

0
∣r′α(t)∣

2dt, (2)

where a is the statistical length of a segment, and nonbonded
interactions,

Uint

kBT
= χbρ0 ∫ ϕ̂A(r)ϕ̂B(r)dr, (3)

where χb is the bare interaction strength and

ϕ̂A(r) =
1
ρ0

n

∑
α=1
∫

NA

0
δ(r − rα(t))dt, (4)

ϕ̂B(r) =
1
ρ0

n

∑
α=1
∫

N

NA

δ(r − rα(t))dt (5)

are dimensionless concentrations of the A and B segments, respec-
tively. A uniform segment density of ρ0 is enforced by constraining
the polymer coordinates so that ϕ̂A(r) + ϕ̂B(r) = 1.

In polymer field theory,13–15 the particle-based GCM is trans-
formed to a mathematically equivalent field-based model, involving
a composition field, W−(r), that couples to the difference in con-
centrations, ϕ̂−(r) ≡ ϕ̂A(r) − ϕ̂B(r), and a pressure field, W+(r),
that couples to the total concentration, ϕ̂+(r) ≡ ϕ̂A(r) + ϕ̂B(r), in
a system of noninteracting polymers. The field-based Hamiltonian,
H̃ f [W−, W+], takes the form

H̃ f

nkBT
= − ln Q +

χbN
4
+

ρ0

n ∫
(

W2
−(r)
χb

−W+(r))dr, (6)

where Q[W−, W+] is the partition function for a single molecule in
the system of noninteracting polymers.

The mean-field approximation of the model is known as self-
consistent field theory (SCFT).16 It approximates the free energy by
F = H̃ f [w−,w+], where w−(r) and w+(r) denote the saddle point

of the Hamiltonian. The saddle point is obtained by solving the self-
consistent conditions

ϕ−(r) = −
2
χb

W−(r), (7)

ϕ+(r) = 1, (8)

where ϕ±(r) are ensemble averages of ϕ̂±(r) in the system of
noninteracting polymers. In general, there are multiple solutions
corresponding to different metastable phases; the one of lowest free
energy represents the stable phase. The phase diagram in Fig. 1 was
calculated using SCFT.2

SCFT is understood to be exact in the limit of infinite molec-
ular weight,17 but there are significant perturbations to the phase
diagram at finite molecular weights. For instance, they push the
order-disorder transition (ODT) to higher χN, creating direct transi-
tions between the different ordered phases and the disordered phase.
The size of the fluctuation corrections is controlled by the invariant
polymerization index18

N̄ = a6ρ2
0N, (9)

which typically ranges between 102 and 104 in experimental
systems.19,20 Field-theoretic simulations (FTSs) provide a means of
evaluating fluctuation corrections by simulating the Hamiltonian
H̃ f [W−, W+].15,21 One complication, however, is that the pressure
field, W+(r), enforcing incompressibility is imaginary, which leads
to a complex-valued Hamiltonian and, thus, a Boltzmann weight
that is not positive definite. Fredrickson and coworkers have dealt
with this problem by performing complex Langevin simulations
(CL-FTSs).21–25 An alternative strategy is to perform a partial saddle-
point approximation,26–28 where the composition field, W−(r), fluc-
tuates, while the pressure field follows its saddle point, w+(r). The
saddle point turns out to be real and, consequently, so is the Hamil-
tonian H̃ f [W−,w+], which thereby allows for standard simulation
techniques. The ODT for N̄ = 104 in Fig. 1 was obtained using this
variant of FTSs.3

In FTSs, the fields are represented on a discrete grid with
finite spacings, Δν, in the ν = x, y, and z directions. One might
expect results to become increasingly accurate as Δν → 0, but this
is not the case for the standard GCM, due to an ultraviolet (UV)
divergence.29–31 Although the model defines the interactions as con-
tact forces, in practice, the range is dictated by the grid spacing.
Consequently, the number of intermolecular interactions is reduced
as the grid resolution becomes finer, which lowers the segregation.
Beardsley and Matsen32 addressed this by expressing results in terms
of an effective interaction parameter

χ = z∞χb + c2χ2
b + c3χ3

b + ⋅ ⋅ ⋅ , (10)

where the coefficients are determined by the Morse calibration,9,33,34

originally devised for particle-based simulations. The first coeffi-
cient, z∞, is the relative number of intermolecular contacts in the
limit of χb → 0 and N →∞. For continuous chains,

z∞ = 1 −
1

Vcellρ0
∫

∞

−∞
P(t), (11)
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where Vcell is the volume associated with each grid point and

P(t) =∏
ν

Δν

a

√
3

2π∣t∣
erf
⎛

⎝

πa
Δν

√
∣t∣
6
⎞

⎠
(12)

is the probability that two segments of a polymer, separated by a
distance t along the chain contour, occupy the same grid point.
The remaining coefficients are determined by fitting the peak of
the disordered-state structure function, S(k), for symmetric diblock
copolymers to renormalized one-loop (ROL) predictions.35,36 Note,
Ref. 32 has shown that the linear approximation, χ ≈ z∞χb, is
equivalent to an earlier renormalization by Stasiak and Matsen.30

The fluctuation-corrected ODT in Fig. 1 was plotted using the
linear χ, rather than the more accurate nonlinear χ. This is because
the periods of the ordered phases differ along the ODT, which neces-
sitates the use of different grids. As a result, the coefficients of the
Morse calibration would have to be re-evaluated at each point along
the transition. The need for distinct grids also inhibits the calcula-
tion of order–order transitions (OOTs). The aim of this paper is to
resolve these two issues.

II. THEORY AND SIMULATION
Our FTSs are performed in Lx × Ly × Lz orthorhombic sim-

ulation boxes with periodic boundary conditions. Note that the
dimensions of the box will generally be expressed in terms of
R0 = aN1/2. The boxes are overlayed with mx ×my ×mz grids of uni-
form spacing, Δν = Lν/mν, in the ν = x, y, and z directions. Hence,
the total volume of a box is V = LxLyLz , and the total number of
grid points is M = mxmymz . The Hamiltonian, H̃[W−,w+], is then
simulated using conventional Langevin dynamics.37

Here, we modify the standard GCM by switching from contin-
uous to discrete chains,38 each consisting of N beads, connected by
harmonic springs. The polymer coordinates of the discrete model
are specified by the set of vectors {rα,i}, where i ∈ {1, 2, . . . , N} is the
monomer index. With this modification, the energy of the bonded
interactions becomes

Ub

kBT
=

3
2a2

n

∑
α=1

N−1

∑
i=1
∣rα,i+1 − rα,i∣

2, (13)

and the dimensionless A and B concentrations become

ϕ̂A(r) =
1
ρ0

n

∑
α=1

NA

∑
i=1

δ(r − rα,i), (14)

ϕ̂B(r) =
1
ρ0

n

∑
α=1

N

∑
i=NA+1

δ(r − rα,i), (15)

respectively. A detailed algorithm and sample source code are
provided in Ref. 28.

The switch from continuous to discrete chains avoids numer-
ical inaccuracies in solving the theory,39,40 and also leads to a more
natural implementation of the Morse calibration. There is no cost of
doing so,32 since the Morse calibration used to remove the UV diver-
gence simultaneously accounts for the modification to the model. In
that regard, the first coefficient of the Morse calibration changes to

z∞ = 1 −
1

Vcellρ0

∞
∑

i=−∞
P(i), (16)

but the remaining coefficients, cp for p = 2, 3, . . ., are still determined
by fitting the peak of S(k) for symmetric diblocks to ROL theory.

A. UV divergence
In an effort to understand the UV divergence, we begin by con-

sidering homopolymer melts (i.e., χb → 0), where the free energy is
generally set to zero. In this limit, the Hamiltonian reduces to

H̃ f

kBT
≈

ρ0

χb
∫ W2

−(r)dr =
ρ0V
χbM∑r

W2
−(r), (17)

which corresponds to a system of M harmonic oscillators with spring
constants of κ = 2ρ0V/χbM. It thus follows that the composition field
at each grid point has an average value and variance of

⟨W−(r)⟩ = 0 and ⟨W2
−(r)⟩ = κ−1, (18)

respectively. Although the field vanishes in the limit of χb → 0, the
free energy of the M harmonic oscillators,

FUV

kBT
= −

M
2

ln(
χbM
2ρ0V

), (19)

nevertheless remains finite. This is the first consequence of the UV
divergence, which will need to be removed from the total free energy.

The remaining effect of the UV divergence appears once χb
becomes finite. To illustrate this, we now consider small χb, where
the weak fields allow the single-chain partition function to be
approximated by14

lnQ ≈ −N
V
[W+(0) + (2 f − 1)W−(0)]

+
N2

2V2 ∑
s,t=±
∑
k≠0

Sst(k)Ws(k)Wt(−k), (20)

in terms of the Fourier transforms

W±(k) = ∫ W±(r)eik⋅rdr. (21)

The coefficients of the expansion are given by

S−−(k) =
1

N2

N

∑
i=1

N

∑
j=1

γiγj exp(−x∣ i − j∣), (22)

S++(k) =
1

N2

N

∑
i=1

N

∑
j=1

exp(−x∣ i − j∣), (23)

S+−(k) =
1

N2

N

∑
i=1

N

∑
j=1

γj exp(−x∣ i − j∣), (24)
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where x ≡ k2a2
/6, γi = +1 for i ≤ NA, and γi = −1 for i > NA. By

symmetry, S−+(k) = S+−(k). The Fourier transforms of the com-
position, ϕ−(k), and total concentration, ϕ+(k), in the system of
noninteracting polymers are given by

ϕs(k) = −∑
t=±

Sst(k)Wt(k). (25)

Thus, the partial saddle-point approximation [i.e., ϕ+(k) = 0 for
k ≠ 0] requires

W+(k) = −
S+−(k)
S++(k)

W−(k). (26)

Substituting this into Eq. (20), we obtain

lnQ ≈ −N
V
[W+(0) + (2 f − 1)W−(0)]

+
2N2

V2 ∑
k≠0

W−(k)W−(−k)
F(k)

, (27)

where

F(k) = 4S++(k)
S++(k)S−−(k) − S2+−(k)

. (28)

Substituting this into Eq. (6) gives

H̃ f

kBT
≈

ρ0

Vχb
{[W−(0) + Vχb( f −

1
2
)]

2

+∑
k≠0
(1 −

2χbN
F(k)

)W−(k)W−(−k)} + nχbN f (1 − f ), (29)

which is again a Hamiltonian for M harmonic oscillators, but with
slightly reduced spring constants relative to those of the homo-
polymer melt. As such, the free energy of the diblock copolymer melt
is given by

F̃
kBT
=

FUV

kBT
+

1
2∑k

ln(1 −
2χbN
F(k)

) + nχbN f (1 − f ). (30)

Note that F(k) diverges for k→ 0, which justifies our inclusion of
the k = 0 term in the sum. Given that χb is small, the logarithm can
be expanded to give

F̃ − FUV

nkBT
= zN χbN f (1 − f ), (31)

where

zN = 1 − ∑k[F (k)]−1

n f (1 − f )
. (32)

In the thermodynamic limit (i.e., V →∞), the sum becomes an
integral and, therefore,

zN = 1 −
N ∫ [F (k)]−1dk
(2π)3ρ0 f (1 − f )

, (33)

where the integration is over −π/Δν ≤ kν ≤ π/Δν for ν = x, y, and z.
Furthermore, in the limit of N →∞,

F(k)→ N tanh(k2a2
/12)

f (1 − f )
, (34)

and, thus,

z∞ = 1 −
1

(2π)3ρ0
∫

dk
tanh(k2a2/12)

. (35)

This expression for z∞ is, in fact, equivalent to the previous
one in Eq. (16), but this is not immediately obvious, given the form
of P(t) in Eq. (12). However, if we use the alternative form32

P(t) =
Vcell

(2π)3 ∫ exp(−x∣t∣)dk, (36)

from which Eq. (12) is derived,32 then the equivalence follows
directly from the properties of geometric sums, whereby

∞
∑

i=−∞
exp(−x∣i∣) =

1
tanh(x/2)

. (37)

Although z∞ can be evaluated numerically using either Eq. (16) or
(35), the former is far less computational.

We are now able to remove the UV divergence. The first step is
to replace the original Hamiltonian by

H f ≡ H̃ f − FUV. (38)

Since FUV is independent of the field, it follows that the resulting free
energy is just

F = F̃ − FUV. (39)

The second step is to renormalize the interaction parameter
by defining χ = z∞χb, which transforms Eq. (31) into the
Flory–Huggins expression

F
nkBT

= χN f (1 − f ) (40)

for disordered melts. Hence, the UV divergence is now gone, at least,
for small χb and large N.

B. Free energy calculations
Although simulations do not generally provide direct access to

the free energy, derivatives of the free energy with respect to different
parameters, X, of the model can be evaluated using

∂F
∂X
= ⟨

∂H f

∂X
⟩, (41)

where the angle brackets denote an ensemble average. Thus, differ-
ences in free energy can be evaluated by thermodynamic integration
(TI) of the derivatives. Lennon et al.23 were the first to apply this
to FTSs. Here, we use a variation of the method, referred to as con-
tinuous TI,41 in which the integration variable continuously varies
by small steps of dX (i.e., X = X0 + ℓdX for ℓ = 0, 1, 2, . . .) during the
course of the simulation; our TIs typically involve ∼106 steps. Once
the simulation is complete, the free energy as a function of X is given
by
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F(X) = F(X0) +∑
ℓ

∂H f

∂X
dX. (42)

To obtain the free energy at a given point in the phase diagram,
Lennon and co-workers simulated the composite Hamiltonian

H = λH̃ f + (1 − λ)Hec, (43)

where

Hec

kBT
=

ρ0

χb
∫ [W−(r) −Wec(r)]2dr (44)

is the Hamiltonian for an Einstein crystal of harmonic oscillators.
The free energy of the polymeric system relative to that of the
Einstein crystal is obtained by integrating

∂H
∂λ
= H̃ f −Hec, (45)

over the interval λ = 0–1. By choosing the prefactor in Eq. (44) to
be ρ0/χb, the Einstein crystal has a free energy identical to that
of the Hamiltonian in Eq. (17) for a homopolymer melt. Hence,
the free energy obtained at λ = 1 automatically accounts for the
UV divergence, without having to subtract FUV from the polymer
Hamiltonian. The reference field, Wec(r), controls the morphol-
ogy. To obtain the free energy of the disordered phase, we set
Wec(r) = χbN( 1

2 − f ). For an ordered phase, we simply add an
appropriate modulation that mimics the symmetry of the desired
phase.

Once the free energy of the polymeric system is known, the
optimum dimensions of the simulation box can be determined by
calculating the change in free energy with respect to Lν. This has to
be done at constant effective χ, and, therefore, χb is continuously
updated during the simulation. To account for the changing value of
χb, we integrate

∂H f

∂Lν
∣
χ
=

∂H f

∂Lν
∣
χb

+
∂H f

∂χb

∂χb

∂Lν
, (46)

where the derivative at constant bare χb is given by

Lν

nkBT
∂H f

∂Lν
∣
χb

= − ln Q −
Lν

Q
∂Q
∂Lν
+

χbN
4

+
N

Vχb
∫ W2

−(r)dr −
M
2n

, (47)

the next derivative with respect to χb is given by

1
nkBTN

∂H f

∂χb
=

1
4
−

1
V ∫

W2
−(r)
χ2

b
dr +

M
2nχbN

, (48)

and the final derivative provides the change in χb required to
maintain a constant χ; the information required to calculate this
derivative will be provided shortly. We select Lx as our integration
variable, but Ly and Lz are also varied simultaneously to maintain
either a fixed volume of the simulation box,31,41

Ly = (
Lx,0

Lx
)

1/2
Ly,0 and Lz = (

Lx,0

Lx
)

1/2
Lz,0, (49)

or a fixed shape of the simulation box,

Ly =
Lx

Lx,0
Ly,0 and Lz =

Lx

Lx,0
Lz,0. (50)

These volume- and shape-conserving TIs are accomplished via
appropriate applications of the chain rule

dH f

dLx
∣

χ
=∑

ν

∂H f

∂Lν
∣
χ

dLν

dLx
. (51)

Note that the volume-conserving TIs can only be applied to phases
that have, at least, one direction of translational symmetry. To
accommodate this requirement, we will restrict our study to the
lamellar and cylindrical phases.

As an alternative to TI, Fredrickson and Delaney25 recently pro-
posed a direct method of evaluating the free energy based on the
identity

F = Lν
∂F
∂Lν
− VLν

∂

∂Lν
(

F
V
). (52)

Using the previous identity in Eq. (41) and the extensity of the free
energy (i.e., F ∝ V), it follows that

F
nkBT

=
Lν

nkBT
⟨
∂H f

∂Lν
∣
χ
⟩. (53)

Note that the FTS model used by Fredrickson and Delaney involved
finite–range interactions, which allowed them to differentiate at con-
stant χb. They also accounted for FUV by scaling the fields rather
than subtracting it from the Hamiltonian. Doing so results in the
alternative expression

Lν

nkBT
∂H f

∂Lν
∣
χb

= − ln Q −
Lν

Q
∂Q
∂Lν
+

χbN
4

−
N

2V ∫
W−(r)ϕ−(r)dr, (54)

but, as required, its ensemble average is identical to that of Eq. (47).

III. RESULTS
Previous studies30,31 have shown that the UV divergence of the

continuous GCM is accurately accounted for by the linear renor-
malization χ = z∞χb. To illustrate that this remains true for discrete
chains, Fig. 2 plots the disordered-state structure function

S(k)
ρ0N

=
n

(χbV)2 ⟨∣W−(k)∣2⟩ −
1

2χbN
(55)

for symmetric diblocks (NA = NB = 45) from three FTSs, using dif-
ferent grid resolutions, but the same z∞χbN = 10. The FTSs are
performed in cubic simulation boxes of sizes Lν/R0 = 4.08, 4.58, and
5.08 with 40 × 40 × 40 grids, resulting in spacings of Δν/a = 0.968,
1.086, and 1.205, respectively. The structure functions for N̄ = 104

and 106, corresponding to segment densities of ρ0a3
= 10.54 and

105.4, are plotted in the lower and upper panels, respectively. In
both cases, the S(k) curves are indistinguishable on the scale of the
statistical noise.
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FIG. 2. Structure functions, S(k), for disordered melts of symmetric (NA = NB

= 45) diblock copolymers at (a) N̄ = 106 and (b) N̄ = 104. Results for different
grid resolutions, Δν, collapse when performed at the same z∞χbN = 10. Arrows
denote peak heights, S(k∗), predicted by ROL theory for different effective χN
values.

The collapse of the curves implies that two simulation boxes
with grid spacings of Δ′ν and Δν yield equivalent results, provided
that their corresponding bare interaction parameters satisfy

χ′b ≈
z∞
z′∞

χb. (56)

However, this does not necessarily imply that the linear approxi-
mation of the effective interaction parameter, χ ≈ z∞χb, is accurate.
While the peak height predicted by ROL for N̄ = 106 and χN = 10
accurately matches the FTS results in Fig. 2(a), the ROL predic-
tion for N̄ = 104 and χN = 10 underestimates the peak height in
Fig. 2(b). According to ROL theory, the observed height corresponds
to a somewhat stronger segregation of χN = 10.23. Hence, the lin-
ear χ is slightly inaccurate at the lower segment density, where the
fluctuations are more pronounced.

To address this issue, we perform a Morse calibration for ρ0a3

= 10.54 and Δν = 1.086a. This is done by simulating S(k) for a series
of symmetric diblock copolymers of N = 60, 90, and 140 at a selec-
tion of χb values in the disordered region. The peak heights, S(k∗),
are then extracted and fit to ROL predictions. Given the large N̄
values, we truncate the expansion of χ in Eq. (10) at second order.
Figure 3 shows the quality of the fit, and the inset compares the
resulting nonlinear χ = z∞χb + 0.14χ2

b to the linear approximation
χ ≈ z∞χb. Note that the nonlinear χ predicts a segregation of χN
= 10.23 for Fig. 2(b), the previous value deduced from the amplitude
of S(k).

FIG. 3. Inverse peak height of the structure function, S−1(k∗), plotted in terms
of the effective χ for a segment density of ρ0a3 = 10.54 and polymerizations
of N = 60, 90, and 140. Symbols denote FTS results, solid curves are ROL
predictions,35,36 and the dashed line is the RPA prediction.42 The inset compares
the nonlinear χ (solid curve) with its linear approximation (dashed line).

Although the Morse calibration brings the results into agree-
ment with ROL theory, it potentially needs to be repeated for each
distinct grid resolution, which is generally impractical. Fortunately,
we have the fact that different grid spacings, Δ′ν and Δν, result in
identical structure functions, S(k), provided z′∞χ′b = z∞χb. It, there-
fore, follows that the coefficients of a Morse calibration for grid
spacings of Δ′ν are given by

c′p = (
z′∞
z∞
)

p

cp (57)

in terms of the corresponding coefficients for the grid spacings of
Δν/a = 1.086. Given this relationship, we can now re-evaluate the
fluctuation-corrected ODT from Ref. 3, this time using the non-
linear χ. Figure 4 compares the revised ODT (solid curve) with
its original position (dashed curve) shown in Fig. 1. Even though
N̄ = 104 is relatively large, the nonlinear term still has a significant
effect. In particular, the ODT for symmetric diblocks of f = 0.5 shifts
from (χN)ODT = 12.7143 to 13.12, which is almost identical to the
prediction from particle-based simulations, (χN)ODT = 13.11 (open
circle).9 Although the ODT agrees reasonably well with an analo-
gous prediction for asymmetric diblocks of f = 0.25 (open circle),11

the nonlinear χ does not provide a distinctive improvement over
the linear χ; as will be discussed later, this is likely because the
particle-based prediction for f = 0.25 is less accurate than the one
for f = 0.5.

Now that we have explained how to translate the Morse cal-
ibration between different grid resolutions, the next challenge is
to compare free energies at different grid resolutions. Based on
previous SCFT calculations2,39 and FTSs,3 we will need to eval-
uate the free energy to an accuracy of about 1 part in 104.
To begin, we calculate the free energy of symmetric diblocks
(NA = NB = 45) at z∞χbN = 15 for N̄ = 106 by thermodynamic inte-
gration (TI) of Eq. (45). The simulation is performed in a cubic box
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FIG. 4. ODT for N̄ = 104 overlayed on the SCFT phase diagram (dotted curves).
Solid and dashed curves are obtained using the nonlinear and linear χ, respec-
tively. Symbols denote predictions from particle-based simulations at f = 0.59 and
f = 0.25.11

of size Lν = 4.58R0 with a grid of mν = 40, and the Einstein crystal
field, Wec(r), is chosen to create three lamellae oriented normal to
the x direction. Once the free energy of the polymer system is known,
we integrate with respect to Lx using Eq. (51), which varies the lamel-
lar period given by D = Lx/3. The solid curve in Fig. 5(a) shows the
free energy from volume-conserving TIs (i.e., LxLyLz = constant),
while the dashed curve shows the free energy from shape-conserving

FIG. 5. Free energy, F, of (a) the lamellar phase at z∞χbN = 15 and (b) the dis-
ordered phase at z∞χbN = 10 for diblock copolymers with NA = 45, NB = 45,
and N̄ = 106. Solid and dashed curves are obtained using the volume- and shape-
conserving TIs defined by Eqs. (49) and (50), respectively. Circular symbols denote
individual TIs from Einstein crystals with identical grid spacing, and crosses denote
direct evaluations of F using Eq. (53). Sample configurations are shown with
insets.

TIs (i.e., Lx = Ly = Lz). The two curves are virtually identical, despite
the fact that their grid resolutions are very different, which implies
that the UV divergence has been accurately accounted for. We note
that there is a small, but noticeable, difference in the free energy at
large Lx, but that is not because of the UV difference. It is well known
that positive strain causes undulations in the lamellae, so as to reduce
the width of the domains.44 The precise shape of the undulations is
sensitive to details, as well as initial conditions, and, consequently,
different boxes result in slightly different free energies. Nevertheless,
both curves produce consistent free energy minima. Interestingly,
the position of the minima coincides with the equilibrium lamellar
period, DSCFT = 1.516R0, predicted by SCFT at χN = 15. Further-
more, the value of the minima closely matches the SCFT prediction
of FSCFT = 3.429nkBT.

Figure 5(b) shows analogous results for the disordered phase at
z∞χbN = 10. In this case, the free energy is virtually constant for the
volume-conserving TIs (solid line), as should be. However, the free
energy from the shape-conserving TIs (dashed line) has a slight pos-
itive slope. Although the slope is exceptionally small considering the
scale of the vertical axis, the variation in free energy is comparable to
the stringent error tolerance required for accurate phase boundary
calculations. Nevertheless, the free energy remains reasonably close
to the SCFT prediction of FSCFT = 2.500nkBT for χN = 10.

To confirm that the UV divergence has been accurately
accounted for, we perform a number of TIs from Einstein crys-
tals (open circles), where the size of the simulation box is varied
by adjusting mν, while maintaining a constant grid spacing of
Δν = 1.086a. Results for cubic boxes with mν = 38 and 40 at z∞χbN
= 15 agree nicely with the TIs in Fig. 5(a), where the box dimen-
sions were varied by changing the grid spacing. Note that we avoid
large boxes of the lamellar phase because of the undulation insta-
bility. Analogous results for the disordered phase in cubic boxes
of mν = 36, 40, and 45 at z∞χbN = 10 produce virtually identical
free energies, illustrating that finite-size effects are indeed negligible.
The results also show that the volume-conserving TIs (solid line) in
Fig. 5(b) are accurate, which implies that the small positive slope in
the free energy of the shape-conserving TIs (dashed line) is, in fact,
an artifact of the UV divergence.

We also test the direct method of calculating the free energy
proposed by Fredrickson and Delaney.25 For the lamellar phase,
Eq. (53) is evaluated for the ν = y and z directions, in which the
morphology is translationally invariant, and the values are then
averaged. The resulting free energies (crosses) closely match the TI
curves. Note that Eq. (53) cannot be used at large Lν, because the
undulations in the lamellae break the translational symmetry in the
y and z directions. For the disordered phase, Eq. (53) is evaluated
for ν = x, y, and z, and then averaged. This time, the resulting free
energy is somewhat larger than the more accurate TI predictions.
Although the difference is tiny in relative terms, the inaccuracy is
nevertheless comparable to the error tolerance required for accurate
phase boundary calculations.

To illustrate the generality of our results, we repeat the pre-
vious calculations for lamellar-forming diblocks, but this time for
cylinder-forming diblocks (NA = 30 and NB = 60). First, the free
energy of an ordered cylinder phase is obtained at z∞χbN = 17 by
performing a TI in an orthorhombic box of size Lx = Ly = 5.08R0
and Lz = 5.8659R0 with a grid of mν = 48 and an Einstein crys-
tal chosen to produce 3 × 2 unit cells of cylinders with their axes
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oriented in the x direction. The spacing between the cylinders is
given by D = Ly/3. Figure 6(a) then shows the change in free energy
as a function of periodicity, obtained using volume-conserving TIs
(solid curve) and shape-conserving TIs (dashed curve). Apart from
a small discrepancy at large Ly due to the undulation instability, the
curves are essentially identical. Just as for the lamellar phase, the
curves exhibit free energy minima that accurately match the SCFT
prediction of FSCFT = 3.534nkBT and DSCFT = 1.671R0 for χN = 17.
Analogous results are shown in Fig. 6(b) for the disordered phase at
z∞χbN = 12. Again, the volume-conserving TIs (solid line) predict
a constant free energy, whereas shape-conserving TIs (dashed line)
produce a slight positive slope with respect to Ly. TIs performed at a
fixed grid resolution of Δx = Δy = 1.004a and Δz = 1.159a (open cir-
cles) confirm that the volume-conserving TIs are the accurate ones.
In any case, the predicted free energies are close to the SCFT pre-
diction of FSCFT = 2.667nkBT for χN = 12. The direct evaluations of
F (crosses) are of similar accuracy as they were for the symmetric
diblocks.

We now decrease the invariant polymerization index to an
experimentally relevant value of N̄ = 104. Figure 7 shows plots for
lamellar-forming diblocks analogous to those in Fig. 5 for the higher
N̄. The enhanced fluctuations amplify the difference between the
volume-conserving TIs (solid curves) and the shape-conserving TIs
(dashed curves). TIs at fixed grid resolution (open circles) illus-
trate that the source of the discrepancy still lies entirely with the

FIG. 6. Free energy, F, of (a) the cylinder phase at z∞χbN = 17 and (b) the dis-
ordered phase at z∞χbN = 12 for diblock copolymers with NA = 30, NB = 60,
and N̄ = 106. Solid and dashed curves are obtained using the volume- and shape-
conserving TIs defined by Eqs. (49) and (50), respectively. Circular symbols denote
individual TIs from Einstein crystals with identical grid spacings, and crosses
denote direct evaluations of F using Eq. (53). Sample configurations are shown
with insets.

FIG. 7. Analogous plots to those in Fig. 5 for the free energy of the (a) lamellar and
(b) disordered phases, but at a reduced invariant polymerization index of N̄ = 104.

shape-conserving TIs. Although the inaccuracy remains relatively
modest considering the scales of the vertical axes, it would still
affect phase boundary calculations. The direct free energy calcula-
tions (crosses) are even more inaccurate, so much so that they are
off the scale of Fig. 7(a) for the ordered lamellar phase.

With the increased fluctuations, the SCFT predictions for the
lamellar phase at χN = 15 and the disordered phase at χN = 10 no
longer agree well with the FTS results in Fig. 7. However, the agree-
ment is nicely restored if we evaluate SCFT using the nonlinear χ.
For the ordered lamellar phase in Fig. 7(a), the segregation increases
to χN = 15.575, for which SCFT predicts FSCFT = 3.504nkBT and
DSCFT = 1.534R0. Indeed, the free energy is just slightly above the
SCFT prediction, and the position of the minimum almost perfectly
matches the arrow corresponding to 3DSCFT. For the disordered
phase in Fig. 7(b), the segregation based on the nonlinear χ is
χN = 10.256, for which SCFT predicts FSCFT = 2.564nkBT in reason-
able agreement with the FTS.

Figure 8 repeats the calculations in Fig. 6 for cylinder-forming
diblocks, but at the reduced invariant polymerization of N̄ = 104.
As before, the UV divergence is well accounted for by the volume-
conserving TIs (solid curves), as confirmed by the TIs from Einstein
crystals, performed with identical grid resolution (open circles).
The free energy minimum of the cylinder phase now deviates from
the SCFT prediction for χN = 17 quoted previously, but it agrees
well with the prediction of FSCFT = 3.628nkBT and DSCFT = 1.694R0
for the χN = 17.739 obtained using the nonlinear χ. Likewise, the
free energy of the disordered phase deviates significantly from
the previous SCFT prediction for χN = 12, but it is close to the
FSCFT = 2.749nkBT predicted by SCFT for the χN = 12.370 obtained
using the nonlinear χ.
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FIG. 8. Plots analogous to those in Fig. 6 for the free energy of the (a) cylinder and
(b) disordered phases, but at a reduced invariant polymerization index of N̄ = 104.

FIG. 9. Free energy for N̄ = 104 compared to that of SCFT for (a) NA = 45 and
(b) NA = 30. Solid and dashed curves show the FTS results plotted using the
nonlinear and linear χ, respectively, and dotted curves show the SCFT predictions.
ODT positions of the FTSs and SCFT are indicated by vertical lines.

The fact that fluctuations shift the position of the ODT
implies that the agreement between the free energy of the FTS and
SCFT cannot hold over the entire range of χN. Indeed, the free
energy of the disordered phase only matches the SCFT prediction,
Eq. (40), for χN values below the mean-field ODT in particle-based
simulations.9–11 Between the mean-field and actual ODT, the free
energy of the disordered phase crosses over to the SCFT prediction
for the ordered phase. To determine what happens in the FTS, we
calculate the free energy of the disordered and ordered phases of
f = 0.5 and 0.333 diblock copolymer melts for N̄ = 104. For the dis-
ordered phase, this is done by a TI of the derivative in Eq. (48). For
the ordered phases, we generalize the TI to allow the dimensions of
the simulation box to track the domain periods predicted by SCFT.
The resulting behavior plotted in Fig. 9 is identical to that of particle-
based simulations, but only if the FTSs are compared to SCFT using
the nonlinear χ.

IV. DISCUSSION
The key facilitating the use of different grid spacings Δ′ν and Δν

is the fact that a pair of FTSs will produce equivalent, or nearly equiv-
alent, behavior, provided they have a common segment density, ρ0,
and the bare interaction parameters χ′b and χb satisfy Eq. (56). Equiv-
alent behavior implies that the effective χ is the same in both FTSs,
but Eq. (56) says nothing about the actual value of χ. It is believed
that χ should be independent of molecular details (e.g., NA and NB),
and, thus, Eq. (10) expresses χ as a simple Taylor series in χb. The
first coefficient, z∞, can be evaluated using Eq. (16) or (35), which
ensures that the Flory–Huggins expression in Eq. (40) is satisfied in
the limit of small χb. The remaining coefficients, cp for p = 2, 3, . . .,
are then determined by fitting the FTS to some theoretical prediction
of the standard Gaussian-chain model (GCM).

The Morse calibration for cp uses the ROL prediction of the
disordered-state structure function, S(k), because this is thought to
be the most accurate prediction available. Although the fit is only
performed for symmetric diblocks, the coefficients should be inde-
pendent of molecular architecture and, thus, should apply to all
block copolymers, as is the case for z∞. Nevertheless, the coefficients
will depend on the monomer density and the grid resolution, i.e.,
ρ0a3, Δx/a, Δy/a, and Δz/a. Thus, a new calibration is potentially
required for each combination of these four parameters. This is why
Beardsley and Matsen3 evaluated the fluctuation-corrected ODT in
Fig. 1 using χ ≈ z∞χb, since the z∞ can be calculated analytically.
However, given the fact that a pair of FTSs produce the same S(k),
provided that they have the same segment density and their bare
interactions satisfy Eq. (56), it immediately follows that the coef-
ficients for different grid resolutions are related by Eq. (57). Since
the FTSs in Ref. 3 were all performed for ρ0a3

= 10.54, the single
Morse calibration in Fig. 3 can, in fact, be applied to all the points
along the ODT, even though they were calculated with different grid
resolutions.

The resulting correction to the ODT in Fig. 4 is relatively
modest, but nevertheless significant. As noted previously, it brings
the ODT at f = 0.5 into excellent agreement with particle-based
simulations.9 It is somewhat difficult to judge the level of agree-
ment with the particle-based simulations at f = 0.25,11 since the FTS
results only cover the range f ≥ 0.267. It appears, though, that the
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switch from the linear to nonlinear χ does not produce much of
an improvement. This could be partly because the ODT occurs at a
higher χ, where the Morse calibrations of the FTSs and the particle-
based simulations are undoubtedly less accurate. However, there is
good reason to suspect that the particle-based prediction for f = 0.25
is relatively inaccurate. First, it relies on a considerable extrapolation
from N̄ ≲ 4000, whereas the prediction for f = 0.5 involves a modest
extrapolation from N̄ ≲ 8000. Second, the extrapolation for f = 0.5
benefits from the Fredrickson–Helfand prediction18 at large N̄.

Our FTSs support the profound conclusion from particle-
based simulations9–11 that the free energy and periodicity of ordered
phases are consistent with SCFT. In our case, the free energies from
the FTSs agree with SCFT to within ∼0.1%, and the preferred domain
sizes of the FTSs and SCFT are even too similar to discern. For
N̄ = 106, it is sufficient to use the linear χ, but for N̄ = 104, this level
of agreement is only achieved when the SCFT is evaluated with the
nonlinear χ. We note that the agreement for the cylinder phase is
somewhat less than that for the lamellar phase, but this is proba-
bly because the nonlinear χ is less accurate at the higher values of
χb. In any case, the agreement in free energy implies that fluctua-
tions should have a relatively small effect on OOTs. Furthermore, the
agreement in domain size is of considerable practical significance;
not only are SCFT calculations far less computational, the accurate
volume-conserving TIs are not applicable to triply periodic phases
(e.g., S, G, and O70).

Likewise, we observed similar agreement between FTSs and
SCFT for the free energy of the disordered phase. As was the case
for the ordered phases, the agreement at N̄ = 104 requires the SCFT
prediction, Eq. (40), to be evaluated using the nonlinear χ. However,
this agreement does not hold in general, or otherwise it would imply
that the ODT is relatively unaffected by fluctuations. As is the case
in particle-based simulations,9–11 the free energy follows the SCFT
prediction for the disordered phase up to the mean-field ODT and
then switches to the SCFT prediction for the ordered phase up to the
actual ODT. Although fluctuations destroy the periodicity of weakly
ordered morphologies, they evidently have little effect on the free
energy.

The structure functions plotted in Fig. 2 demonstrate that
Eq. (56) does an excellent job of mapping between different grid
resolutions. It was only when we considered small changes in free
energy (i.e., 1 part in 104) at the reduced N̄ = 104 that imperfections
in the mapping started to appear. Based on our TIs from Einstein
crystals with identical grid spacing, we know that the volume-
conserving TIs are exceptionally accurate. The problem lies solely
with the shape-conserving TIs. Even still, the inaccuracy only rep-
resents a slight departure from Eq. (56). For the disordered phase
in Fig. 7, the adjustment to z∞ required to maintain a constant free
energy is ≲ 0.1%.

The reason that the volume-conserving TIs prove to be more
accurate than the shape-conserving TIs can be understood by exam-
ining the variation in z∞. In Fig. 7, for instance, z∞ only varies
from 0.7804 to 0.7805 for the volume-conserving TIs (solid line),
whereas it ranges from 0.7431 to 0.8065 for the shape-conserving
TIs (dashed line). This is because, to an excellent approximation, z∞
and, thus, the UV divergence are controlled by the volume of the
grid cells, Vcell = ΔxΔyΔz , as opposed to the individual values of Δν.
Hence, the strength of the UV divergence remains almost constant

for the volume-conserving TIs, as is the case when simulations are
performed with identical grid resolutions. The fact that z∞ is pri-
marily a function of ρ0a3 and Vcell/a3 is not particularly surprising,
given that it is related to the probability of two monomers from the
same chain occupying the same cell of the grid.

The direct estimate of F using Eq. (53) performs well for
N̄ = 106, but unfortunately, not so well for N̄ = 104. Apart from
statistics, the only potential sources of inaccuracy are finite-size
effects and the estimation of ∂χb/∂Lν. Our simulation boxes were
sufficiently large that F ∝ V , and, so, the inaccuracy must originate
from Eq. (56) used to evaluate the change in bare χb required to
maintain a constant effective χ. This is the same source responsible
for the inaccuracy of the shape-conserving TIs in Figs. 5–8. Indeed,
both inaccuracies can be simultaneously corrected with the same
minor adjustment to ∂χb/∂Lν, as must be the case, since Eq. (53)
derives from the mathematical identity in Eq. (52).

The effect of Vcell on the UV divergence should not seriously
impede our ability to evaluate the boundary between two phases. The
problem can be avoided, or at least minimized, by selecting the grid
spacings, Δ′ν and Δν, of the competing phases such that V′cell ≈ Vcell
(or rather z′∞ ≈ z∞). This is far less restrictive than requiring identi-
cal grids (i.e., Δ′ν = Δν for ν = x, y, and z). For morphologies that have
translational symmetry in one of the directions ν (e.g., the disor-
dered, L, and C phases), the corresponding Δν can be chosen freely,
and, therefore, one has the freedom to precisely match its cell vol-
ume with that of the competing phase. Potential issues will only arise
when comparing two triply periodic–phases (e.g., the G-O70 phase
boundary).

For triply–periodic phases (e.g., S, G, and O70), the value of
Vcell = LxLyLz/mxmymz is constrained by the fact that Lν must be
commensurate with the equilibrium periodicity of the morphology
in the ν direction and the fact that mν must be an integer. Never-
theless, we can accept some difference between V′cell and Vcell. Based
on Figs. 7(b) and 8(b), a mismatch of ≲ 5% should not affect the
free energy difference too seriously. In the event that it is not pos-
sible to find sufficiently similar values for V′cell and Vcell, one could
use a metastable morphology, such as the L or C phase, to estimate
the effect of the mismatch on the free energy difference. Thus, even
boundaries between triply–periodic phases should be manageable.

Delaney and Fredrickson24 have already calculated complete
phase diagrams using FTSs. They avoided the UV divergence by reg-
ularizing the Hamiltonian. This was done by smearing the polymer
concentrations, which in effect imparts a finite range, aint, to the
interactions. As a result, the FTSs converge once the grid spacing
becomes small relative to the range of the interactions. However,
this comes at a computational cost. To obtain universal results,
the range of the interactions needs to be small relative to all other
relevant length scales, the shortest of which is undoubtedly the
width of the internal A/B interfaces, wI . Thus, this strategy requires
Δν ≪ aint ≪ wI , whereas our approach only requires Δν ≪ wI . The
degree to which these inequalities must be satisfied will depend on
the level of accuracy required. Some noted inconsistencies between
experiments and the phase diagrams calculated in Ref. 24 may, in
fact, be due to not meeting these requirements sufficiently.3 Choos-
ing the regularization approach would likely require grids of, at
least, twice the resolution in each dimension, which would increase
the number of grid points, M, by an order of magnitude. On the
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other hand, the regularization approach might benefit from the
direct method of calculating free energy, where the derivative in
Eq. (53) can be performed at constant χb, thus avoiding the inaccu-
racy that we experienced. It remains to be seen which strategy—the
renormalization of χb or the regularization of H f — will fare best.

V. SUMMARY
A strategy has been developed for dealing with the UV diver-

gence that occurs in field-theoretic simulations (FTSs) of block
copolymer melts. First, the free energy corresponding to the homo-
polymer limit (i.e., χb = 0) is zeroed by removing FUV from the
field-based Hamiltonian. Next, an effective interaction parameter,
χ = z∞χb + c2χ2

b + c3χ3
b + ⋅ ⋅ ⋅ , is defined, to account for the reduc-

tion in the intermolecular contacts that occurs as the grid resolution
becomes finer. The linear coefficient, z∞, can be evaluated analyt-
ically using Eq. (16), but the nonlinear coefficients, cp, require fits
to ROL theory. In principle, the coefficients depend on four para-
meters: the segment density, ρ0a3, and the grid spacings, Δν/a, for
ν = x, y, and z. However, to an excellent approximation, they just
depend on ρ0a3 and Vcell/a3

= ΔxΔyΔz/a3.
A key observation is that simulations with different grid spac-

ings, Δ′ν and Δν, produce equivalent results, and, thus, correspond to
equivalent χ, provided that their respective bare interactions, χ′b and
χb, satisfy Eq. (56). This leads to the relationship in Eq. (57) relating
the coefficients of the nonlinear χ for different grid spacings. Using
this, we revised the order–disorder transition (ODT) for N̄ = 104

from the original prediction3 plotted in Fig. 1 based on the linear χ
to a more accurate prediction based on the nonlinear χ derived from
the Morse calibration in Fig. 3 for Δν = 1.086a. Notably, the switch to
the nonlinear χ brings the ODT into agreement with particle-based
simulations of symmetric ( f = 0.5) diblock copolymers.9

Consistent with particle-based simulations,9–11 we also find that
the free energy and domain size of ordered phases match the pre-
dictions of self-consistent field theory (SCFT). However, accurate
agreement generally requires the SCFT to be evaluated with the
nonlinear χ. The fact that SCFT predicts accurate domain sizes rep-
resents a considerable cost saving for FTSs. Furthermore, the fact
that the free energy remains similar to SCFT predictions implies that
fluctuations will have a relatively small effect on order–order transi-
tions (OOTs), as opposed to the large effect they have on the ODT.
Similar agreement between FTSs and SCFT was also observed for
the free energy of the disordered phase, but only below the mean-
field ODT. Between the mean-field and actual ODT, the free energy
of the disordered phase tracks the SCFT prediction for the ordered
phase.

The mapping between bare interaction parameters in Eq. (56)
works exceptionally well at large N̄ = 106, but slight imperfections
appear at N̄ = 104, particularly when the difference between z′∞ and
z∞ is large. Although the discrepancy is relatively small, it could nev-
ertheless prevent accurate phase boundary calculations. This poses
a potential issue for OOT calculations, where each ordered phase
requires the simulation box to be commensurate with its equilibrium
periodicity. Fortunately, however, the inaccuracy becomes negligi-
ble when V′cell ≈ Vcell. Provided that one of the competing phases
is uniform, singly periodic or doubly periodic, it is generally possi-
ble to select grid resolutions such that V′cell = Vcell. In the event that
both phases are triply periodic (e.g., gyroid and Fddd) and it is not

possible to select grids with sufficiently similar cell volumes, a non-
triply-periodic metastable phase (e.g., lamellar or cylindrical) could
be used to gauge the effect of different cell volumes on the free energy
difference. Thus, we now have the means to calculate complete phase
diagrams and to map the results onto the standard Gaussian-chain
model (GCM) using the Morse calibration of χ.
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