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New developments in field-theoretic simulations (FTSs) are used to evaluate fluctuation corrections to
the self-consistent field theory of diblock copolymer melts. Conventional simulations have been limited to
the order-disorder transition (ODT), whereas FTSs allow us to evaluate complete phase diagrams for a
series of invariant polymerization indices. The fluctuations stabilize the disordered phase, which shifts the
ODT to higher segregation. Furthermore, they stabilize the network phases at the expense of the lamellar
phase, which accounts for the presence of the Fddd phase in experiments. We hypothesize that this is due
to an undulation entropy that favors curved interfaces.
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Block copolymers are a special class of polymers, where
the chain is divided into chemically distinct blocks. These
molecules have received tremendous attention due to their
intriguing self-assembly behavior and applications [1–3].
They also serve as a model system for studying lyotropic
liquid crystals [4,5] and biological membranes [6,7],
because of their theoretical tractability. The generic behav-
ior of block copolymers is well captured by the simple AB
diblock architecture, involving a block of fN A-type
segments joined to a block of ð1 − fÞN B-type segments.
Driven by a general immiscibility of unlike components, a
liquid (or melt) of diblock copolymers self-assembles into
A- and B-rich domains. The domains remain microscopic in
size due to the connectivity of the blocks, resulting in
periodically ordered microstructures.
Figure 1(a) shows a phase diagram for polyisoprene-

polystyrene (PI-PS) diblock copolymer melts [8–12]. The
stable microstructures include the classical lamellar (L),
cylindrical (C), and spherical (S) phases as well as two
complex network phases referred to as gyroid (G) and
Fddd (O70). The geometry is controlled primarily by the
diblock composition, f, and the degree of order by the
product χN, where χ is the Flory-Huggins parameter
specifying the immiscibility of A and B segments.
One remarkable property of block copolymers is that

their behavior becomes universal at large N [14–16], once
the atomistic details are small relative to the size of the
polymers, R0 ¼ aN1=2; for simplicity, we assume equal
statistical lengths a for the A and B segments. If the
universality holds, then even coarse-grained models are
sufficient for quantitative predictions. The standard choice
is the Gaussian-chain model (GCM) [17], where the system
is treated as an incompressible melt of thin elastic threads.
In this model, the A and B segments interact by contact
forces with a strength proportional to χ.
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FIG. 1. (a) Experimental phase diagram for PI-PS diblock
copolymers [8–12] and (b) theoretical phase diagram calculated
using SCFT [13]. The images at the top show the domain
structure of the ordered phases obtained from FTSs.
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The phase behavior of the standard GCM is generally
well described by mean field or rather self-consistent field
theory (SCFT). Indeed, the SCFT phase diagram [13],
shown in Fig. 1(b), exhibits the same sequence of phases
observed in experiments. In fact, SCFT [18] predicted the
stability of gyroid [19,20] over a perforated-lamellar phase
[21] well before experiments demonstrated so [22,23].
Furthermore, SCFT [24] predicted the Fddd phase years
before it was actually discovered [11,12]. However, there is
one important difference in the topology of the phase
diagrams. Experiments observe direct order-disorder tran-
sitions (ODTs) with the various ordered phases, whereas
SCFT predicts that the spherical phase extends down to a
critical point at f ¼ 0.5 and χN ¼ 10.495, separating the
other ordered phases from the disordered phase. This
difference is attributed to fluctuation effects, which are
controlled by the invariant polymerization index

N̄ ¼ a6ρ20N; ð1Þ

where ρ0 is the segment density. SCFT neglects fluctua-
tions and thus corresponds to N̄ → ∞ [25], whereas N̄
generally varies from 102 to 104 in experiments [10]. In the
case of the PI-PS diblocks, N̄ ≈ 1100.
In a seminal 1987 paper by Fredrickson and Helfand

[26], the fluctuation correction was estimated using a
Landau-Brazovskii theory. They showed that fluctuations
expand the disordered region, causing direct transitions
with each of the ordered phases. However, the approxi-
mations involved begin to break down for N̄ ≲ 1010, and
thus are inaccurate for experimental conditions. In any
case, simulations [27–29] confirmed the direct transitions
some time ago, but only recently has the position of the
ODT been accurately calibrated. For symmetric diblocks
(f ¼ 0.5), it occurs at

ðχNÞODT ¼ 10.495þ 41.0N̄−1=3 þ 123.0N̄−0.56: ð2Þ

The first term is the SCFT prediction, the second is the
correction of Fredrickson and Helfand, and the third is an
empirical correction from simulations [15]. Further simu-
lations [30] at other compositions, f, reveal similar shifts in
the L- and C-disorder transitions.
It is not clear what happens to the order-order transitions

(OOTs). The Landau-Brazovskii theory predicts a direct
G-disorder transition consistent with experiment [31], but
it also predicts the Fddd phase to be destroyed by
fluctuations at experimentally relevant values of N̄ [32].
Unfortunately, simulations are hindered by the fact that the
simulation box needs to be commensurate with the equi-
librium periodicity of an ordered phase, which precludes
the use of a single box size. Nevertheless, Delaney and
Fredrickson [33] have managed to compare ordered phases
between different boxes using field-theoretic simulations
(FTSs), which are capable of calculating free energies with

sufficient precision to discern the relative stabilities [28,34].
However, the fluctuations in their FTSs were insufficient to
produce a direct G-disorder transition, and yet they still
destroyed the Fddd phase. It has been suggested [35,36]
that these inconsistencies with experiment may be due to
long-range interactions introduced in order to remove an
ultraviolet (UV) divergence from the standard GCM [37].
Our aim in this Letter is to investigate the universal
behavior in the large-N regime. We again apply FTSs,
but this time retaining the contact forces of the standard
GCM, and instead removing the UV divergence by
renormalizing χ. The foundations underpinning our FTSs
and the technical details of the implementation can be
found in Ref. [38].
In polymer field theory [39,40], the particle-based GCM

is converted to a field-based version. The resulting
Hamiltonian, Hf½W−;Wþ�, takes the form

Hf

nkBT
¼ − lnQþ χbN

4
þ N

V

Z �
W2

−

χb
−Wþ

�
dr; ð3Þ

where V is the volume of the system, n ¼ ρ0V=N is the
total number of molecules, and χb is the bare interaction
parameter. The Q½W−;Wþ� is a partition function for a
single diblock, where the A and B segments are acted upon
by the fields WAðrÞ ¼ WþðrÞ þW−ðrÞ and WBðrÞ ¼
WþðrÞ −W−ðrÞ, respectively. SCFT approximates the free
energy by F ¼ Hf½w−; wþ�, where w−ðrÞ and wþðrÞ denote
the saddle point of the Hamiltonian, whereas FTSs simply
simulate Hf½W−;Wþ�. However, there is the complication
that WþðrÞ is imaginary valued, which Fredrickson and
coworkers handle by performing complex-Langevin FTSs
[28,33,41]. Given that theW−ðrÞ fluctuations are dominant
[38], we instead invoke a partial saddle point approxima-
tion for WþðrÞ [42–45]. It turns out that wþðrÞ is real,
which therefore allows us to simulate H½W−; wþ� using
conventional Langevin dynamics. We also switch from
continuous to discrete chains withN ¼ 90monomers, so as
to remove a source of numerical inaccuracy. The computer
code used for our FTSs is available from Ref. [38]. Note,
however, that we now increment the Langevin dynamics
using the Leimkuhler-Matthews algorithm, which speeds
up the FTSs more than 10× relative to the predictor-
corrector algorithm [46].
The calculations are performed in Lx × Ly × Lz ortho-

rhombic boxes with periodic boundary conditions. In
order to represent the fields, the boxes are overlaid with
mx ×my ×mz grids of uniform spacing, Δν ¼ Lν=mν, in
the ν ¼ x, y, and z directions. Hence, each grid point
corresponds to a finite volume of Vcell ¼ V=M, where V ¼
LxLyLz and M ¼ mxmymz. In SCFT, an acceptable accu-
racy is readily achieved by choosing a sufficiently fine grid,
but in FTSs, one also has to contend with the UV
divergence. Although the model defines the interactions
as contact forces, in practice, the range is dictated by the
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grid spacings, Δν. Consequently, the number of inter-
molecular interactions decreases as Vcell → 0, causing a
reduction in segregation.
Fortunately, the polymer field theory appears to be

renormalizable [47]. As such, the UV divergence can be
removed by expressing results in terms of a renormalized or
rather effective interaction parameter,

χ ¼ z∞χb þ c2ðz∞χbÞ2 þ c3ðz∞χbÞ3 þ � � � ; ð4Þ

where z∞ is the relative number of intermolecular contacts
in the limit of χb → 0 and N → ∞, which can be calcu-
lated analytically [36,40]. The remaining coefficients, cp
for p ¼ 2; 3;…, are determined by a Morse calibration
[15,48,49], where the structure function SðkÞ for disordered
melts of symmetric diblock copolymer is fit to renormal-
ized one-loop predictions [50].
Figure 2 displays our phase diagrams for N̄ ¼ 106, 105,

and 104. They are plotted in terms of the effective χ in
Eq. (4), where the coefficients, c2 ¼ 0.012, 0.041, and
0.21, respectively, are evaluated as described in Ref. [36];
given the large values of N̄, we set c3 ¼ c4 ¼ � � � ¼ 0. Note
that the Morse calibration not only corrects for the UV
divergence, but also accounts for the switch from continu-
ous to discrete chains [36]. This is evident by the fact that
the FTS results converge to the SCFT phase diagram of the
standard GCM in Fig. 1(b) (dotted curves) with increas-
ing N̄.
The ODTs in Fig. 2 are located by monitoring the

disappearance of scattering peaks in the structure function
SðkÞ of the ordered phases with decreasing χ, as demon-
strated in Ref. [35]. The accuracy of this procedure has
been validated by well-tempered metadynamics [51]. Note
that the periodicity of the ordered phases is provided by
SCFT, as previously justified [35,36,51]. To avoid finite-
size effects, the simulations for the L, C, S, G, and O70

phases are performed in relatively large boxes containing
3, 6, 27, 8, and 8 unit cells, respectively, as depicted in
Fig. 1. The fact that our ODTs for f ¼ 0.5 agree with
Eq. (2) adds to the preceding evidence [43,45,52] that the
partial saddle point approximation is accurate for the large
values of N̄ considered here.
To obtain the OOTs, we evaluate the free energies

of the ordered phases with thermodynamic integration
(TI) [28,36]. This involves simulating the composite
Hamiltonian,

H ¼ λHf þ ð1 − λÞHec; ð5Þ

which combines the polymer Hamiltonian in Eq. (3) with
the Hamiltonian for an Einstein crystal of harmonic
oscillators,

Hec

nkBT
¼ N

Vχb

Z
ðW− −WecÞ2dr: ð6Þ

The reference field, WecðrÞ, is generally set to a previously
equilibrated configuration of the ordered phase for similar
system parameters. During the simulation, Hf and Hec are
sampled as λ is gradually incremented from 0 to 1 in steps
of dλ. Once the simulation is complete, the free energy is
given by [36]

F ¼
Z

1

0

ðHf −HecÞdλ: ð7Þ
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FIG. 2. Phase diagrams for (a) N̄ ¼ 106, (b) N̄ ¼ 105, and
(c) N̄ ¼ 104, calculated using FTS. Circles denote the FTS data
points, crosses show predictions of Eq. (2), and dotted curves
compare the SCFT phase boundaries from Fig. 1(b).
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Our OOTs are located by linearly interpolating between
free energies evaluated at equal values of χN on opposing
sides of the transition; recall that f ¼ NA=N is restricted to
discrete values. Because of the computational cost of the
TIs, we reduce the boxes of the L, C, S, G, and O70 phases
to 3, 4, 8, 1, and 2 unit cells, respectively. Even still, we
expect minimal finite-size effects (see Refs. [36] and [51]).
The step sizes in our TIs are generally small enough
(dλ ∼ 10−5 − 10−6) to ensure accurate phase boundaries
on the scale of our plots. The only exception is the G-O70

boundary at N̄ ¼ 104, where statistical inaccuracies
become comparable to the symbol size, as a result of the
large fluctuations and the structural similarity of the two
network phases.
Because the phases of an OOT need to be simulated in

different boxes, they will inevitably require different grid
resolutions. Although the renormalization of χb accurately
accounts for this difference, small imperfections do become
significant when evaluating free energies to the high
precision required to locate OOTs. Fortunately, we are
saved by a recent discovery [36] that the inaccuracy in
the renormalization vanishes as the difference in Vcell
approaches zero. Given that Vcell can be varied arbitrarily
for phases with one or more directions of translational
invariance (e.g., the disordered, L, and C phases), it is
usually possible to choose boxes with identical cell
volumes. In our case, the only exception is the G-O70

boundary. Nevertheless, we manage to find boxes with Vcell
values matching to ≲2%. Furthermore, we are able to
correct for the slight mismatch by examining the effect of
Vcell on the free energy of the lamellar phase, as proposed in
Ref. [36]. Even for N̄ ¼ 104, the effect proves to be small.
The validity of our phase diagrams is bolstered by the

sensible evolution from SCFT as N̄ becomes finite. At our
largest N̄ ¼ 106, the shift in the ODT is only appreciable
near the mean-field critical point, exactly as predicted by
the Landau-Brazovskii calculation of Fredrickson and
Helfand [26]. Interestingly, the Fddd region shifts toward
higher segregation and the G region expands toward the
lamellar region. Naturally, the fluctuation effects should
increase monotonically as N̄ is reduced, but nevertheless
the degree to which the Fddd region shifts upward is
remarkable.
Even though N̄ ¼ 104 is still relatively large compared

with typical experiments, the fluctuation shift of the ODT is
considerable, as it must be. The experimental phase dia-
gram in Fig. 1(a) indicates that the complex-phase channel is
pushed up to ðχNÞODT ≈ 20 for N̄ ¼ 1.1 × 103. Based on
improved estimates of χ [53], the shift is actually somewhat
larger. Indeed, recent simulations [30] suggest an ODT of
ðχNÞODT ≈ 25. In any case, these values far exceed the top of
the Fddd region in the SCFT phase diagram, located at
χN ¼ 13.7 in Fig. 1(b) [24,54]. Thus, the large upward shift
of the Fddd region in Fig. 2 is, in fact, necessary to account
for its survival in PI-PS diblock copolymer melts [11,12].

We attribute the failure of the Landau-Brazovskii cal-
culation to predict a stable Fddd phase for N̄ ≲ 104 [32] to
the truncation of large wave vectors, which prevents small-
scale undulations of the internal interfaces. The entropy of
the interfacial undulations is known to favor curved
interfaces in lytopic liquid crystals [55], and the same
has been hypothesized for block copolymer melts [56].
This would account for the shift of the network phases
toward the L region. The lack of a significant shift of their
boundaries with the C region could be explained by the
relatively close match in interfacial curvatures [57].
Naturally, the interfaces of the S phase are significantly
more curved than those of the C phase, and accordingly the
S-C boundary shifts toward the C region. Thus, this
hypothesis does, in fact, fit with our observations.
Given the relatively large N ¼ 90, our phase diagrams

should be universal. Indeed, the ODTs at f ¼ 0.5 are
perfectly consistent with Eq. (2). The significance is that all
other models will exhibit identical phase diagrams, once N
is large enough to produce a sufficient separation between
the length scales of the microscopic (i.e., atomistic) details,
which are independent of N, and the size of the polymers,
which increases as R0 ¼ aN1=2. In this regime, the depend-
ence on the microscopic details, no matter how many extra
parameters that might entail, can be completely absorbed
into the effective χ. For instance, the phase diagrams of
Delaney and Fredrickson [33] should become identical to
ours if the range of their interactions was small relative to
R0, although not necessarily zero. Even the dependence on
the particular shape of their interaction potential would be
adsorbed into χ. This is also, in principle, true of experi-
ments, but it should be noted that our phase diagrams are
specific to monodisperse diblock copolymers with equal
segment lengths. Thus, even if the PI-PS diblocks conform
to the large-N regime, there would still be some differences
due to polydispersity and conformational asymmetry.
Now that we are able to access the universal behavior of

the large-N regime, there are many other block copolymer
systems that could be investigated. One of the main
advantages of FTSs is their immense versatility. In par-
ticular, they can handle complicated polymeric architec-
tures with a minimal increase in computational effort
relative to that of the simple diblock [58,59], which is
not the case for conventional simulations. Furthermore,
they can be adapted to a variety of ensembles [60–62],
which is particularly useful when dealing with blends. For
AB-type systems [13], the modifications to the algorithm
are relatively simple [38]. The extension to three or more
chemically distinct components (e.g., ABC-type systems) is
also possible, although less trivial [63].
In summary, we have calculated fluctuation-corrected

phase diagrams for diblock copolymer melts calibrated with
respect to the standard Gaussian-chain model. Consistent
with experiments, we find direct G-disorder transitions
for N̄ ≲ 104. Furthermore, we predict a considerable
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stabilization of the Fddd phase, sufficient to account for its
presence in PS-PImelts of N̄ ≈ 1.1 × 103. This suggests that
the entropic preference for curved interfaces in lytopic liquid
crystals [55] also extends to block copolymers, and likely
beyond. Thirty-five years after Fredrickson andHelfand [26]
provided the first insights into fluctuation effects in block
copolymer melts, we now have accurate predictions for the
complete phase diagram in the universal regime of large N.
Given the versatility of FTSs, they are destined to become a
powerful means of investigating fluctuation effects in a
wide range of other block copolymer systems, not to
mention lytropic liquid crystals and biological membranes.
Admittedly, therewill need to be further testing of the partial
saddle point approximation to determine the full range of
applicability.
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