
PHYSICAL REVIEW MATERIALS 7, 105605 (2023)

Fluctuation stabilization of the Fddd network phase in diblock, triblock,
and starblock copolymer melts
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Self-consistent field theory has demonstrated that the homologous series of (AB)M starblock copolymers are
promising architectures for the complex network Fddd phase. Nevertheless, it remains to be seen if the level
of segregation will be sufficient to survive the fluctuations inevitably present in experiments. Here, we study
the effect of fluctuations using field-theoretic simulations, which are uniquely capable of evaluating order-order
phase transitions. This facilitates the calculation of complete fluctuation-corrected diagrams for the diblock (M =
1), symmetric triblock (M = 2), and nine-arm starblock (M = 9) architectures. Although fluctuations disorder
the Fddd phase at weak segregations, they also stabilize the Fddd phase with respect to its ordered neighbors,
which extends the Fddd region to higher segregation. Our results provide strong evidence that Fddd will remain
stable in experiments on the side of the phase diagram where the outer A blocks of the star form the network
domain. However, it is doubtful that Fddd will survive fluctuations on the other side where they form the matrix
domain.
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I. INTRODUCTION

Two decades have passed since the initial discovery of the
Fddd network phase in ABC triblock terpolymer melts [1–4].
Shortly after the discovery, Tyler and Morse [5] predicted
its stability using self-consistent field theory (SCFT). In-
terestingly, they found that the Fddd region extends to
the binary limit corresponding to AB diblock copolymer
melts, although only for χN � 13.7 [6], where χ is the
Flory-Huggins interaction parameter and N = NA + NB is the
total polymerization. Given the relatively weak segregation,
Tyler and Morse suggested that Fddd would likely be de-
stroyed by fluctuations, which are controlled by the invariant
polymerization index

N̄ = a6ρ2
0 N, (1)

where a is an average statistical segment length and ρ0 is
the bulk segment density. Indeed, using Landau-Brazovskii
theory [7], Miao and Wickham [8] predicted Fddd to be
unstable for experimentally relevant values of N̄ � 104 [9].

Nevertheless, experiments by Takenaka and cowork-
ers [10–13], and then later by Ahn et al. [14], detected
stable Fddd regions in polyisoprene-polystrene (PI-PS) di-
block copolymer melts, despite the fact that N̄ ≈ 1100.
Figure 1 shows the Fddd (O70) regions in the PI-PS
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phase diagram [15–17]. This apparent contradiction between
experiment and theory was recently resolved [18]. Using field-
theoretic simulations (FTSs), it was shown that, at least for
diblock copolymer melts, fluctuations enhance the stability
of the Fddd phase with respect to the gyroid and lamellar
phases, shifting the Fddd region to a sufficient segregation to
maintain its order. It was hypothesized that this stabilization
is due to the entropy associated with undulating interfaces,
which is omitted by the Landau-Brazovskii calculation due to
a truncation of wave vectors.

Since the discovery of Fddd in bulk diblock copolymer
melts, it has been observed in thin films [19], and with added
minority-type homopolymer [20]. In addition to the PI-PS
chemistry, it has also been identified in polystyrene-poly
(L-lactide) diblock copolymer melts [21], liquid-crystalline
diblock copolymer melts [22], and high-χ miktoarm starblock
copolymer melts [23,24]. As researchers begin to consider
Fddd as a candidate morphology, they may very well find that
it is relatively common. Indeed, SCFT calculations [25–27]
are now routinely predicting the Fddd phase with varying
levels of stability. One class of architectures for which it
appears particularly stable is the (AB)M starblock, consisting
of M identical diblock arms joined by their B ends. Even still,
it does not extend beyond the weak segregations typically
destroyed by fluctuations. Therefore, we apply FTSs to this
class of molecules to assess whether Fddd will again survive
fluctuation effects as it does for the simple diblock copolymer
(i.e., M = 1).

II. FIELD-THEORETIC SIMULATIONS

We model the starblock copolymers using discrete chains
with pointlike monomers connected by harmonic bonds [28],
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FIG. 1. Phase diagram for PI-PS diblock copolymer melts ob-
tained from a compliment of experiments [15–17]. The images at
the top show the domain structure for the ordered lamellar (L),
cylindrical (C), spherical (S), gyroid (G), and Fddd (O70) phases
obtained from FTSs.

as illustrated in Fig. 2. The coordinates of the monomers
are denoted by rα, j,i, where α = 1, 2, . . . , n indexes the
molecules, j = 1, 2, . . . , M indexes the arms, and i =
1, 2, . . . , N indexes the monomers within each arm. The po-
sition of the vertex where the M arms are joined is denoted by
rcore,α . In terms of these coordinates, the energy of the bonded
interactions is given by the harmonic potentials

Ub

kBT
= 3

2a2

n∑
α=1

M∑
j=1

N−1∑
i=1

|rα, j,i − rα, j,i+1|2

+ 3

a2

n∑
α=1

M∑
j=1

|rα, j,N − rcore,α|2. (2)

The first set of potentials corresponds to normal bonds con-
necting the monomers within each arm, while the second set
involves stiffer bonds that connect the M arms together. We
regard the latter as half bonds since two connected in series
are equivalent to a normal bond; this condition is necessary
for all the bonds of a triblock copolymer (i.e., M = 2) to be
identical.

The block copolymer nature of the molecule is invoked by
labeling the outer i = 1, 2, . . . , NA monomers as type A and
the remaining inner monomers as type B. The monomer types
are specified by the array γi, which takes on values of +1
and −1 for A and B monomers, respectively. Given this def-
inition, the standard Flory-Huggins interaction energy can be
written as

Uint

kBT
= ρ0χb

4

∫
(1 − φ̂2

−)dr, (3)

FIG. 2. Schematic diagram of a three-arm starblock copolymer
with NA = 3 and NB = 5. Monomer positions are given by the vectors
rα, j,i and the vertex of the star is denoted by the vector rcore,α .

where χb is a bare interaction parameter and

φ̂−(r) = 1

ρ0

n∑
α=1

M∑
j=1

N∑
i=1

γiδ(rα, j,i − r) (4)

is the composition of the melt (i.e., A concentration minus
B concentration). The model also assumes the melt is incom-
pressible, which is achieved by imposing the constraint

φ̂+(r) = 1, (5)

where

φ̂+(r) = 1

ρ0

n∑
α=1

M∑
j=1

N∑
i=1

δ(rα, j,i − r) (6)

is the total monomer concentration.
The particle-based partition function for this model is

given by

Z =
∫

exp

(
−Ub + Uint

kBT

)
δ[φ̂+(r) − 1]d{rα, j,i}, (7)

which involves 3nMN integrations over the monomer coordi-
nates. In polymer field theory [38–40], the partition function
is converted to

Z =
∫

exp

(
− Hf

kBT

)
DW−DW+, (8)

where

Hf

nMkBT
= − 1

M
ln Q + χbN

4
+ N

V

∫ (
W 2

−
χb

− W+

)
dr (9)

is a field-theoretic Hamiltonian that depends on the fields
W−(r) and W+(r). In addition to the explicit dependence in
the integral, it involves the partition function of a single star-
block, Q, where the A and B monomers are acted upon by the
fields WA(r) = W+(r) + W−(r) and WB(r) = W+(r) − W−(r),
respectively.

To evaluate Q for a single molecule, we fix the ith
monomer of its first arm at position r, which divides the
molecule into two independent portions. We then define a
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partial partition function, qi(r), for the portion consisting of
the outer i monomers of the first arm, which can be solved
recursively with

qi+1(r) = hi+1(r)
∫

g(R)qi(r − R)dR, (10)

starting from q1(r) = h1(r). Here,

g(R) =
(

3

2πa2

)3/2

exp

(
−3R2

2a2

)
(11)

is the Boltzmann weight for a normal bond and

hi(r) = exp(−W+(r) − γiW−(r)) (12)

is the Boltzmann weight for the field acting on monomer i.
Similarly, we define an analogous partial partition function,
q†

i (r), for the remaining portion of the molecule (i.e., the inner
N − i + 1 monomers of the first arm and the other M − 1 arms
attached to it). It is again obtained recursively with

q†
i−1(r) = hi−1(r)

∫
g(R)q†

i (r − R)dR, (13)

but starting from a more complex initial condition

q†
N (r) = hN (r)

∫
g1/2(R)qM−1

arm (r − R)dR, (14)

where

g1/2(R) =
(

3

πa2

)3/2

exp

(
−3R2

a2

)
(15)

is the Boltzmann weight for a half bond and

qarm(r) =
∫

g1/2(R)qN (r − R)dR (16)

is the partition function for a single arm anchored to position
r. Once the partial partition functions are known, the single-
molecule partition function is given by

Q = 1

V

∫
qi(r)q†

i (r)

hi(r)
dr = 1

V

∫
q†

1(r)dr. (17)

It can be evaluated using any value of i, but it is most conve-
nient to use i = 1.

The above equations are solved in Lx × Ly × Lz

orthorhombic boxes of volume V = LxLyLz with periodic
boundary conditions. In order to represent the fields, the
boxes are overlaid with mx × my × mz grids of uniform
spacing, 	ν = Lν/mν , in the ν = x, y, and z directions.
Hence, each grid point corresponds to a finite volume of
Vcell = 	x	y	z. The convolution integrals in Eqs. (10), (13),
and (16) are solved in Fourier space, where they reduce to
simple products [28].

One might expect results to become increasingly accurate
as Vcell → 0, but that is not the case. Although the model
defines the interactions as contact forces, in practice, the range
is dictated by the grid spacings, 	ν . Consequently, the number
of intermolecular interactions decreases as Vcell is reduced,
which lowers the degree of segregation, leading to an ultra-
violet divergence [29]. Fortunately, the polymer field theory
appears to be renormalizable [30]. As such, the divergence can

be removed by expressing results in terms of a renormalized
or rather effective interaction parameter [18,31]

χ = z∞χb + c2(z∞χb)2 + c3(z∞χb)3 + · · · , (18)

where

z∞ = 1 − 1

Vcellρ0

∞∑
i=−∞

Pi (19)

is the relative number of intermolecular contacts for discrete
chains, in the limit of χb → 0 and N → ∞, expressed in
terms of

Pi =
∏
ν

	ν

a

√
3

2π |i| erf

(
πa

	ν

√
|i|
6

)
, (20)

the probability that two monomers, separated by i monomers
along the chain contour, occupy the same cell of the grid [32].
The remaining coefficients, cp for p = 2, 3, ..., are determined
by a Morse calibration [33–35], where the structure function,
S(k), for disordered melts of symmetric diblock copolymer
are fit to renormalized one-loop (ROL) predictions [36]. In
addition to removing the divergence, this maps our results
onto the standard Gaussian chain model [37].

SCFT approximates the free energy by F = Hf [w−,w+],
where w−(r) and w+(r) denote the saddle point of the
Hamiltonian, whereas FTSs instead simulate Hf [W−,W+]
[38–40]. However, there is a complication that W+(r) is imag-
inary valued, which Fredrickson and co-workers handle by
performing complex-Langevin FTSs [41–43]. Given that the
W−(r) fluctuations are dominant, we instead invoke a partial
saddle-point approximation for W+(r) [28,44,45]. The partial
saddle point, w+(r), is obtained by enforcing the mean-field
version of incompressibility

φ+(r) = 1, (21)

where

φ+(r) = 1

NQ

N∑
i=1

qi(r)q†
i (r)

hi(r)
(22)

is the average monomer concentration in an ensemble of
noninteracting polymers subjected to the fields. It turns out
that w+(r) is real, which therefore allows us to simulate
H[W−,w+] using conventional Langevin dynamics.

In the Langevin dynamics, the composition field evolves
according to

W−(r; τ + δτ ) = W−(r; τ ) − �(r; τ )δτ + N (0, σ ), (23)

where

� = φ− + 2W−
χb

(24)

is a forcing term and N (0, σ ) provides random numbers from
a normal distribution of zero mean and σ 2 = 2δτ/Vcellρ0 vari-
ance. The forcing term depends on the average composition in
the ensemble of noninteracting polymers, which is given by

φ−(r) = 1

NQ

N∑
i=1

γi
qi(r)q†

i (r)

hi(r)
. (25)

105605-3



MATSEN, BEARDSLEY, AND WILLIS PHYSICAL REVIEW MATERIALS 7, 105605 (2023)

3 6 9 12 15
10-2

10-1

100

101

102

103

104

7.8

7.6

7.5

FIG. 3. Structure function, S(k), at a sequence of z∞χbN values,
calculated for nine-arm starblocks with NA = 57. The upper curves,
which are shifted up by integer numbers of decades for clarity,
exhibit Bragg peaks signifying the ordered Fddd phase, while the
featureless lower curve indicates a disordered morphology.

Here, we increment Eq. (23) using the Leimkuhler-Matthews
algorithm described in Ref. [46]. The partial saddle-point
approximation for the pressure field, w+(r; τ ), is satisfied by
solving Eq. (21) at each time step using the Anderson-mixing
algorithm detailed in Ref. [28]. Computer source code for our
FTSs is provided in the SM [47].

III. RESULTS

Here we examine the homologous (AB)M block copolymer
series for M = 1, 2, and 9, the three cases for which complete
SCFT phase diagrams (i.e., including Fddd as a candidate
phase) have been previously evaluated [25]. To take advan-
tage of previous FTSs for diblock copolymers (M = 1) [18],
we perform analogous FTSs for the remaining two archi-
tectures using the same N = 90. Nevertheless, these new
simulations are more computational, particularly for M = 9,
and furthermore, the phase diagrams are no longer symmetric
about f = 0.5. Therefore, we limit our FTSs to the intermedi-
ate N̄ = 105 studied in Ref. [18]. This choice still provides
significant fluctuation corrections but without imposing ex-
cessive computational demands.

To locate order-disorder transitions (ODTs), we examine
the structure (or scattering) function [48,49]

S(k)

ρ0N
= nM

(χbV )2
〈|W−(k)|2〉 − 1

2χbN
, (26)

where W−(k) ≡ ∫
W−(r) exp(−ik · r)dr and the angle brack-

ets denote an ensemble average. Figure 3 shows results for
the Fddd (O70) phase of a nine-arm starblock copolymer at a
composition of f = 0.633. As the segregation of the ordered
phase is gradually reduced, the Bragg peaks corresponding
to its symmetry decrease and then disappear. This locates the
ODT at z∞χbN = 7.55 ± 0.05. Although metastablity could,
in principle, cause the ordered phase to persist somewhat
below the true ODT, previous studies [50,51] have illustrated
that this is not an issue, particularly at the large N̄ of our
current study. To avoid finite-size effects, the simulations for
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FIG. 4. Samples of the polymer Hamiltonian, Hf , and the
Einstein crystal Hamiltonian, Hec, during a FTS for the thermody-
namic integration of a nine-arm starblock copolymer melt in the
Fddd phase at NA = 57 and z∞χbN = 9. The arrows mark the av-
erages, 〈Hf 〉 and 〈Hec〉, used in Eq. (30) to evaluate the free energy,
F .

the L, C, S, G, and O70 phases are performed in relatively large
boxes containing 3, 6, 27, 8, and 8 unit cells, respectively,
as depicted in Fig. 1. The periodicities of the ordered phases
are provided by SCFT as previously justified [31,50,51], es-
pecially for the large N̄ of this study.

Order-order transitions (OOTs) are challenging to locate
because the simulation box cannot be simultaneously com-
mensurate with the periodicities of both ordered phases. Given
the need for separate boxes, free energies are required in
order to compare their relative stability. Fortunately, the free
energy can be accurately calculated in FTSs by performing
thermodynamic integration (TI) [31,42]. This is done using
the composite Hamiltonian,

H = λHf + (1 − λ)Hec, (27)

which combines the polymer Hamiltonian in Eq. (9) with the
Hamiltonian for an Einstein crystal of harmonic oscillators,

Hec

nMkBT
= N

V χb

∫
(W− − Wec)2dr. (28)

The reference field, Wec(r), is generally set to a previously
equilibrated configuration of the ordered phase at similar sys-
tem parameters. To simulate the composite Hamiltonian, the
forcing term in Eq. (23) is set to

� = λ

[
φ− + 2W−

χb

]
+ (1 − λ)

2[W− − Wec]

χb
. (29)

During the simulation, Hf and Hec are sampled as λ is grad-
ually incremented from zero to one in steps of dλ. Once the
simulation is complete, the free energy of the block copolymer
melt is given by [31]

F = 〈Hf 〉 − 〈Hec〉, (30)

where the angle brackets denote averages over the duration of
the simulation. Figure 4 shows results for the Fddd phase
of a nine-arm starblock melt at NA = 57 and z∞χbN = 9
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using dλ = 5 × 10−6. From Eq. (30), we obtain F/nMkBT =
3.4477 − 1.4810 = 1.9667. This free energy is accurate to
better than one part in 104, which is, in fact, necessary for
calculating OOTs.

Our OOTs are located by linearly interpolating between
free energies evaluated at equal values of z∞χbN on opposing
sides of the transition; recall that f = NA/N is restricted to
discrete values. Because of the computational cost of the TIs,
we reduce the boxes of the L, C, S, G, and O70 phases to 3,
4, 8, 1, and 2 unit cells, respectively. Even still, we expect
minimal finite-size effects (see Refs. [31] and [51]). Because
the phases of an OOT need to be simulated in different boxes,
they will inevitably require different grid resolutions. Slight
imperfections in the renormalization of χb can significantly
affect free energy comparisons when the cell volumes of the
two grids differ by too much [31]. Although this is a rel-
atively minor issue at N̄ = 105, we nevertheless match the
Vcell values, which is always possible when one of the phases
possesses translational symmetry (e.g., the disordered, L, and
C phases). Even for the G-O70 boundary, where both phases
are triply periodic, we still manage to find boxes with Vcell

values matching to � 2%.
Figure 5 displays the previous fluctuation-corrected phase

diagram for diblocks [18] along with our new diagrams for
symmetric triblocks and nine-arm starblocks. In order to com-
pare with the SCFT predictions of Ref. [25], we plot the FTS
results in terms of the effective χ ≈ z∞χb + 0.041(z∞χb)2, as
previously calibrated in Ref. [18]. The main effect of the fluc-
tuations is to stabilize the disordered phase, which pushes the
ODTs to higher segregations, particularly near the mean-field
critical points denoted by crosses. (χN )ODT shifts upward
by 10% for the diblock and triblock melts, and by 18% for
the nine-arm starblock melt. We note that experiments [52]
are consistent with our finding of similar-sized shifts for the
diblock and triblock ODTs. While these shifts tend to be
localized near the critical points, the shift for the starblock
melt remains substantial all the way along the large- f side of
the ODT. Furthermore, the effect is enhanced near the Fddd
region (i.e., f ≈ 0.63), perhaps because it coincides closely
with the mean-field critical point.

The effect of fluctuations on the OOTs is far milder than
for the ODTs. Nevertheless, there are some clear trends, par-
ticularly at the weaker segregations. The G and O70 phases
shift toward the L phase, the C phase tends to shift toward
the G phase, and the S phase toward the C phase. In all these
cases, the shift is toward the phase with the lower average
interfacial curvature. It has been suggested that the entropy
associated with fluctuations of the internal interfaces favors
interfacial curvature [18,53], as is the case in lyotropic liquid
crystals [54]. However, there is one exception; the O70 bound-
aries not only shift toward the L phase but also toward the
G phase, despite that the interfaces of G have a higher aver-
age curvature. This implies, not surprisingly, that fluctuation
effects on the ordered phases are not solely governed by the
average of the interfacial curvature.

The increased stability of the Fddd phase with respect to
its ordered neighbors causes the Fddd region to shift toward
higher χN relative to the SCFT prediction corresponding to
N̄ → ∞. Evidently, this shift is sufficient in the case of PS-PI
diblock copolymer melts (N̄ ≈ 1100) to prevent the Fddd
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FIG. 5. Phase diagrams for (a) AB diblocks, (b) (AB)2 triblocks,
and (c) (AB)9 starblocks, calculated for N̄ = 105 using FTSs. Circles
denote the FTS data points and solid curves provide a guide to the
eye. For comparison, SCFT predictions for N̄ → ∞ are shown with
dashed curves, and mean-field critical points are denoted by crosses.

region from being wiped out by the disordered phase. The
question is whether the same will be true for starblock copoly-
mers. On the small- f side of the starblock diagram, SCFT
predicts a long and narrow Fddd region that extends toward
intermediate segregation. Fluctuations not only increase its
width but also extend it to higher segregation. Given that
Fddd survives fluctuations in diblock melts, it is a virtual
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certainty that it will continue to do so for starblock melts.
Although SCFT predicts an unusually wide Fddd region on
the large- f side of the starblock diagram, it is nevertheless
limited to relatively weak segregations. Fluctuations do push
the Fddd region toward higher segregation, but only slightly.
Considering the enhanced upward shift of the ODT in star-
block melts, it seems doubtful that Fddd would survive the
level of fluctuations typical of experiments.

IV. DISCUSSION

Until now, the study of fluctuation effects has been al-
most exclusively limited to diblock copolymer melts. The
only fluctuation-corrected phase diagrams for complicated
architectures have been based on the Landau-Brazovskii the-
ory, which involves a considerable number of approximations
including the cutoff of large wave vectors that prevents small-
scale undulations of the internal A/B interfaces. Mayes and
Olvera de la Cruz [55] applied the theory to ABA triblock
copolymer melts, but they only considered the classical L,
C, and S phases. Floudas et al. [56] later applied it to (AB)4

starblock copolymer melts. They considered the gyroid phase
but not the Fddd phase. Strangely, though, the G phase in
their mean-field and fluctuation-corrected phase diagrams is
extraordinarily stable at asymmetric compositions, which con-
tradicts SCFT predictions [25,57], as well as our current FTSs.
It is hard to understand how Landau-Brazovskii predictions
for four-arm starblock melts could differ so much from those
of diblock melts [8,58,59]. We suspect that there is an issue
with the way they handled the higher-order wave vectors
required to treat the G phase.

Apart from Landau-Brazovskii calculations, most previous
studies of fluctuations are based on conventional particle-
based simulations. These are reasonably effective for linear
polymers such as diblocks and triblocks, but they become
challenging for larger multiblock copolymers. In addition to
the increased size, the dynamics of nonlinear polymers is
notoriously slow. Particle-based simulations of our nine-arm
starblock copolymers, each containing 810 monomers, still
remain unfeasible at melt densities. There is also the prob-
lem of locating OOTs. Although thermodynamic integration
can be applied to particle-based simulations, obtaining the
necessary four digits of accuracy is impractical. Indeed,
particle-based simulations have yet to produce a complete
phase diagram for even the simple diblock architecture.

The FTSs not only remove most of the approximations
implemented in Landau-Brazovskii theory [7], they also pro-
vide sufficiently accurate free energies to evaluate OOTs, and
they can readily handle complicated architectures. On the
surface, the computational demands of the (AB)M starblock
appear independent of the number of arms, M. However,
our FTSs for the nine-arm starblock are 3× as costly as those
for the diblock and triblock because of an increase in the
number of Anderson-mixing iterations required to solve the
partial saddle-point approximation. Nevertheless, the relative
slowdown is far less than it would be for a particle-based
simulation.

Our FTSs were able to handle a large number (N = 90) of
monomers per starblock arm, which has a couple of important
advantages. For one, it provides a relatively fine resolution in

composition, f = NA/N . More importantly, however, the high
degree of polymerization ensures that our phase diagrams
are in the universal regime [35,60]. This happens once N is
large enough to produce a sufficient separation between the
microscopic length scale (i.e., a) and the polymeric length
scale (i.e., R0 = aN1/2). In this regime, the dependence on
microscopic details, no matter how many extra parameters that
might entail, can be completely absorbed into the effective χ .
Indeed, the fact that we use discrete as opposed to continuous
Gaussian chains is accounted for by the fact that z∞ in Eq. (19)
is defined with a sum [28] as opposed to an integral [32].

Contrary to particle-based simulations, FTSs are most ef-
ficient at large N̄ and become increasingly computational as
N̄ is reduced. Fortunately, there have been major algorithmic
advances in recent years [46,61–63], in addition to the usual
hardware improvements, that have sped up FTSs by orders
of magnitude. Undoubtedly, there will be more to come.
Large-scale FTSs on complicated block copolymer systems
are certain to become routine for N̄ � 104. However, some
technical issues will need to be resolved in order to go much
lower in N̄ . Fortunately, there is good evidence [31,64–66]
that the SCFT predictions for the equilibrium periodicities
of the ordered phases remain accurate to relatively low N̄ .
Otherwise, we would have to develop FTS methods for deter-
mining the preferred periodicity of triply periodic phases (e.g.,
S, G, and O70), since the current methods can only be applied
to phases with translational symmetry (e.g., L and C) [31].
A more serious concern [64] is the renormalization of χb in
Eq. (18), and so that may need to be improved. Furthermore,
the partial saddle-point approximation is bound to become
inaccurate. Although the approximation can, in principle, be
lifted by applying complex-Langevin FTSs, they suffer from
an instability which becomes problematic at low N̄ (see the
SM of Ref. [67]). Nevertheless, FTSs are already immensely
successful, and the attention that brings will undoubtedly lead
to further advances in expanding their applicability.

V. SUMMARY

We have calculated fluctuation-corrected phase diagrams
for (AB)M block copolymer melts, calibrated with respect to
the standard Gaussian-chain model [37]. Along with previous
Landau-Brazovskii calculations for ABA triblocks [55] and
(AB)4 starblocks [56], these are the first to explore fluctu-
ation effects beyond those of the simple diblock. Notably,
our calculations include both complex network phases, gyroid
and Fddd . They also avoid the truncation of wave vectors
imposed in the Landau-Brazovskii theory, thereby allowing
the A/B interfaces to fluctuate. Our calculations do, however,
retain the partial saddle-point approximation for the incom-
pressibility constraint, but this is expected to have a negligible
effect at the large N̄ = 105 of our current study.

As expected, the most significant effect of fluctuations is
to shift the ODT to higher χN . We find that the shift for
starblocks (M = 9) is more pronounced compared to simple
diblocks (M = 1) and symmetric triblocks (M = 2), not only
in the vicinity of the mean-field critical point but also at asym-
metric compositions corresponding to stars with long end
blocks ( f > 0.5). The effect of fluctuations on the OOTs is
relatively mild, but it is generally consistent with the previous
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observation [18] that the OOTs shift toward the morphology
with less interfacial curvature. This supports the hypothesis
that fluctuations favor curved interfaces [18,53], as is the case
for lyotropic liquid crystals [54]. However, we do find one
exception: fluctuations stabilize the Fddd phase with respect
to both the lamellar and gyroid phases.

The fact that fluctuations have such a stabilizing effect on
the Fddd phase explains how it manages to survive in diblock
copolymer melts [10–14,21], despite the fact that the weak
degree of order predicted by SCFT is typically destroyed by
fluctuations [5,6]. Likewise, we expect the Fddd phase to be
stable in (AB)M starblock copolymer melts on the side of the

phase diagram where the end blocks form the network domain
( f < 0.5). However, our calculations suggest that it is unlikely
to be stable on the other side where the cores of the starblocks
reside in the network domain ( f > 0.5).
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