Efficient Method of Designing Stable Layered Cathode Material for Sodium Ion Batteries Using Aluminum Doping

Hari Vignesh Ramasamy,‡ Karthikeyan Kaliyappan,‡ Ranjith Thangavel,† Won Mo Seong,§ Kisuk Kang,§ Zhongwei Chen,§ and Yun-Sung Lee⁎,†

†School of Chemical Engineering, Chonnam National University, Gwang-ju 500-757, Republic of Korea
‡Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
§Department of Material Science and Engineering, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-742, South Korea

Supporting Information

ABSTRACT: Despite their high specific capacity, sodium layered oxides suffer from severe capacity fading when cycled at higher voltages. This key issue must be addressed in order to develop high-performance cathodes for sodium ion batteries (SIBs). Herein, we present a comprehensive study on the influence of Al doping on the structural and electrochemical properties of a P2–Na0.5Mn0.5−xAlxCo0.5O2 (x = 0, 0.02, or 0.05) cathode for SIBs. Detailed structural, morphological, and electrochemical investigations were carried out using X-ray diffraction, cyclic voltammetry, and galvanostatic charge–discharge measurements, and some new insights are proposed. Rietveld refinement confirmed that Al doping caused TMO6 octahedra (TM = transition metal) shrinkage, resulting in wider interlayer spacing. After optimizing the aluminum concentration, the cathode exhibited remarkable electrochemical performance, with better stability and improved rate performance. Electrochemical impedance spectroscopy (EIS) measurements were performed at various states of charge to probe the surface and bulk effects of Al doping. The material presented here exhibits exceptional stability over 100 cycles within a 1.5–4.3 V window and outperforms several other Mn–Co-based cathodes for SIBs. This study presents a facile method for designing structurally stable cathodes for SIBs.

Rechargeable lithium ion batteries (LIBs) are used in a wide range of consumer electronics. Higher-energy-density LIBs are already dominating the current automobile market including hybrid electric vehicles (HEVs), plug in hybrid electric vehicles (PHEVs), and full electric vehicles (FEVs). However, geographical constraints impose high costs on lithium and thus LIBs. Sodium ion batteries (SIBs) are found to be the future of energy storage as they have the wide potential to complement the LIBs to a greater extent. In addition, SIBs are low-cost and highly safe, and sodium resources are widely available on the earth’s crust (sodium is the fourth-most abundant element on the earth’s crust). The working principle of SIBs is similar to that of LIBs and involves the migration of cations/anions across a separator toward electrodes to realize voltage-driven electrochemical reactions. Gravimetric energy density is not a serious issue for the large-scale energy storage systems required for smart grids and the storage of intermittent energy sources like solar and wind power; thus, SIBs are a natural choice for these applications. Several reported SIB anode materials have exhibited capacities of around 400 mAh g⁻¹ and voltage ranges of 0.1–0.6 V. Thus, researchers must focus on developing new cathodes to have the greatest chance of improving the operating voltage of SIBs. Although sodium and lithium metals exhibit similar physical and chemical properties, the larger radii of the Na⁺ ion remains a hurdle in developing structurally stable cathode materials for SIBs.

Recently, numerous host materials with reversible sodium storage behavior have been widely reported, including layered oxides, polyanion materials, and Prussian blue analogues. Among these materials, layered transition metal oxides (TMOs) have been significantly studied due to their rich diversity of structure and ease of synthesis. Additionally, they can accommodate single, binary, and ternary TM ions that undergo redox reactions during charging and discharging, resulting in high discharge capacities. These layered oxides have a common structure that consists of sheets of edge-sharing TMO6 octahedra. Polymorphisms appear as a result of variations in the stacking of these layers along the c-axis. Layered oxides are differentiated into two different forms, prismatic (P) and octahedral (O), based on the coordination of the Na ion in the layered structure. They can be further classified into more specific types, such as P2, P3, and O3, depending on the number of TM layers in the unit cell. These materials are very sensitive toward calcination, Na-ion
stoichiometry, and their synthesis parameters. In terms of cyclic stability and rate performance, P2-type materials were found to be better than O3-type materials. This is due to the larger tunnel for alkali ion diffusion in P2-type layered oxides, resulting in improved electrochemical performance compared with O3-type layered oxides. Despite these good structural properties, the cyclic stability and energy density of P2-type materials is severely affected by the P2–O2 phase transition that occurs during the extensive deintercalation of Na ions from layered oxides, which results in the inferior rate capability of P2-type cathodes in comparison to O3-type layered oxides.

Hence, designing advanced electrode materials with an optimized composition is essential for obtaining highly economic, safe, and long-life cathodes with high energy densities for SIBs. Using manganese-based cathodes provides low-cost, safe, and sustainable batteries due to the high abundance and low toxicity of manganese. Many manganese-based P2 cathodes with good electrochemical properties have been reported over the past few years. The drawback of Mn3+-based cathodes lies in their capacity fading, which arises from Jahn–Teller deformation caused by the Mn3+ ions and results in the appearance of multiple voltage steps in the discharge curve. Despite these drawbacks, many researchers have tried to modify Mn3+-based cathodes by introducing foreign metals into their structure. Yabuuchi et al. reported a P2−NaFe0.5Mn0.5O2 cathode that delivered 190 mAh g\(^{-1}\) at 12 mA g\(^{-1}\), but its stability was not impressive. Wang et al. synthesized P2−Na0.67Mn1−xMnxO2 with varying composition using a solid-state method, but it suffered from capacity fading.

P2−Na0.67Mn1−xFe0.25MnxO2 exhibited a high capacity, delivering 200 mAh g\(^{-1}\) at a rate of 15 mA g\(^{-1}\), but with inferior rate performance. Li et al. reported P2−Na0.67Cu0.25Fe0.25MnxO2 as a promising air-stable cathode with Cu\(^{2+}/\)Cu\(^{+}\) redox activity, but it could deliver only 60 mAh g\(^{-1}\) at a 1C rate over 150 cycles. Larger Na ions create more stress accompanied by a large volume change during charge/discharge, which causes severe capacity fading in SIB cathodes. Optimizing the composition of SIB cathodes can greatly improve their electrochemical performance for the practical realization of ambient-temperature SIBs.

Various design strategies have been adopted to optimize the composition of cathodes, including (i) morphological variation, (ii) surface coating with metal oxides, and (iii) introducing an inactive dopant into the lattice. Substituting cheap and lightweight dopants with similar radii to Mn, such as Mg, Al, Ni, Co, and Cr, into the cathode structure changes the local atomic arrangements, which was found to improve its electronic conductivity and stability. Many attempts have been made to prevent the sodium-driven phase transition in P2-type layered oxides. Yuan et al. synthesized P2−Na0.67Mn0.65Ni0.15Co0.2O2 using a sol–gel method. They partially replaced the Co\(^{3+}\) ions with Al\(^{3+}\) ions, resulting in improved cycling stability. Billaud et al. synthesized an earth-abundant P2−Na0.67MnxMgyO2, where 5% Mg content smoothed the structure; increasing the Mg content improved the stability at the expense of a little capacity and improved the cathode cyclability. Substituting Zn into P2-type Na0.67Ni0.33Mn0.67O2 prevented the Na\(^{+}\)/vacancy ordering and improved its average voltage and capacity retention. Clemet et al. studied in detail the effects of Mg doping P2 layered structures and found that it reduces the content of Jahn–Teller-active Mn\(^{3+}\), delays the high-voltage phase transition, and thereby increases the capacity retention and rate capability of these materials. Mg substitution suppressed the high-voltage P2–O2 phase transition of P2−Na0.67Mn0.65Ni0.33O2.

Our present work is motivated by previous SIB reports that suggest the positive role that metal- ion doping can play in improving the capacity, electrochemical stability, and rate capability of SIB cathodes. We synthesized a series of Al-doped Na0.67MnxAl0.33−xMn0.67Co0.33O2 (x = 0, 0.02, or 0.05) materials using a simple sol–gel method with citric acid as a chelating agent. The positive effects of Al doping on the structural and electrochemical properties of this Na−Mn−Co-based compound are analyzed in detail. Aluminum is abundant, inexpensive, and lightweight, with a similar radius (0.53 Å) as Mn\(^{3+}\) (0.66 Å), thus making the substitution easier. Correspondingly, the Al−O bond is stronger than the Mn−O bond, which strengthens the cathode structure over long cycles. Rietveld refinement measurements confirmed that Al-doping causes shrinkage of the TMO\(_6\) octahedra, with enlarged d spacing and a wider Na ion diffusion layer, resulting in very stable cycling performance at higher voltages. The morphological features of Al-doped Na0.67MnxAl0.33−xMn0.67Co0.33O2 were analyzed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), and its electrochemical properties were analyzed using cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) measurements. All samples could be reversibly charged and discharged within an extended voltage range of 1.5–4.3 V. We found that doping 0.02 mol of Al\(^{3+}\) was sufficient to produce good structural stability, with 83% capacity retention over prolonged cycling. There are no other reports solely on substituting aluminum for redox-active Mn for SIBs. Our work is significant due to the stabilization effect found upon replacing Mn in the lattice with Al, and our results suggest that this is a facile way of designing improved cathode materials for room-temperature SIBs.
The Na$_{0.5}$Mn$_{0.5−x}$Al$_x$Co$_2$O$_{4}$$_2$ samples were synthesized using a citric-acid-assisted sol–gel method, as shown in Scheme 1. Choosing an appropriate amount of sodium precursor is the most important part of this cathode synthesis as this determines the final cathode structure. An excess amount of sodium acetate (5%) was added during synthesis in order to balance the loss of sodium during the high-temperature annealing process. The chemical composition of all samples was determined using ICP-AES measurements, and the resulting values are given in Table 1. The obtained values are similar to calculated values with only slight deviations. Hereafter, the Na$_{0.5}$Mn$_{0.5−x}$Al$_x$Co$_2$O$_{4}$$_2$ samples are denoted as MC0, MC2, and MC5 for $x = 0$, 0.02, and 0.05, respectively. The cathode material has a lower sodium content with a defective TM ratio of 0.5 instead of 1, which results in the phase stabilization of the material. The results of the XRD and Rietveld analyses are presented in Figure 1. The XRD peaks indicate a P2$_1$ structure with a P6$_3$/mmc (no. 194) space group, and there is no sign of any impurity phases after doping with Al atoms. Rietveld refinement was carried out to better understand the effects of Al doping, and the lattice parameter values for all samples are presented in Table 2. The lattice parameters for the pristine sample are $a = 2.821$ Å and $c = 11.212$ Å, which are identical to the reported values. The a value remains constant upon increasing the amount of Al, while the c value decreases. This is due to shortening of the Al–O bonds after substitution. The refinement results, along with the atomic occupancies, for each sample are shown in Tables 3–6. The d spacing is 3.444 Å for MC0 and gradually increases to 3.469 and 3.481 Å for MC2 and MC5, respectively. The TM–O bond concurrently decreases with increasing aluminum content: 1.955, 1.948, and 1.940 Å for MC0, MC2, and MC5, respectively. The amount of Na used in the synthesis matches with the refined value of 0.5 mol for all samples. The majority of Na ions prefer a Na (2) site as it is electrostatically more favorable than the other Na sites. The crystal structures of the three samples were constructed using the data obtained from the Rietveld analysis, and the corresponding images are presented in Figure 1e–g. In general, the layered oxides consist of a sodium layer and a TMO$_6$ octahedron layer arranged alternatively to form a “sandwich”-type structure along the c axis. In the case of SIBs, the wide interlayer spacing is necessary for facile Na-ion insertion. This structural data provides useful information about the local environment, which explains the higher stability of the Al-doped samples. The TM–O and O–O bond lengths and the slab thickness of the TMO$_6$ octahedron all decrease as a result of the decreased Al–O bond length, which results in improved structural stability. The increased d spacing of the Al-doped samples arises from the contraction of the TMO$_6$ octahedra without affecting the number of TM layers. The TMO$_6$ volume shrinkage originates from the reduced TM–O and O–O bond lengths. The larger d spacing decreases the activation barrier for Na-ion diffusion, resulting in a high rate capability for the cathode, with improved diffusion kinetics during (de)sodiation. P2$_2$-type layered oxides have two different prismatic sites for Na-ion occupancy: Na (1) and Na (2). Na (1) sites share faces with MO$_6$ octahedra, whereas Na (2) sites share edges with MO$_6$ octahedra. The distribution of Na ions in these sites depends on the electrostatic repulsion between Na$^+$ ions and the TM ions and in-plane Na$^+$–Na$^+$ interactions. Na$^+$/vacancy ordering is also present in these P2$_2$ structures, as reported by various groups.

XPS was performed to determine the oxidation states of the TMs present in the cathodes. Figure 2 shows the Mn, Co, and Al XPS spectra for MC0, MC2, and MC5. The Mn 2p spectra show two major peaks corresponding to Mn 2p$_{1/2}$ and Mn 2p$_{3/2}$, which can be deconvoluted into four peaks. The two peaks located at 643 and 654 eV correspond to Mn$^{4+}$, while the peaks located at 642 and 653 eV correspond to Mn$^{3+}$, which is consistent with previously reported values. The two major cobalt peaks present at 779.5 and 794.5 eV correspond to Co 2p$_{1/2}$ and Co 2p$_{3/2}$, respectively. This indicates a Co valence state of +3. The MC2 and MC5 spectra exhibit a peak located at 74.3 eV, which corresponds to Al 2p. The Al$^{3+}$ ions do not take part in the electrochemical processes of the cathode and, thus, make no contribution to its capacity. Moreover, the peak positions for all elements did not vary between the three samples, which confirms that Mn, Co, and Al exist in the same oxidation state in the three different cathodes. All samples were analyzed using FESEM (Figure 3) in order to characterize the influence of Al doping on the cathode morphology. All samples look alike, with little variation in size and shape; this is attributed to the minimal amount of aluminum doping. The average particle size is about 3–5 μm in length, with a thickness of 1 μm. Figure 3a shows a high-magnification FESEM image of MC2, and Figure 3b shows a TEM image of a single MC2 particle with an irregular Flake-like morphology. An SAED pattern (Figure 3c) was recorded during TEM analysis to further probe the MC2 structure. This pattern clearly shows the (001) zone axis of the single crystallite from which the interplanar distance was calculated along the (100) zone to be 2.48 Å. Figure 3d–i shows Na, Mn, Co, Al, and O elemental maps of MC2, with all elements uniformly distributed over the entire particle.

The MC0, MC2, and MC5 cathodes were characterized electrochemically using CV and galvanostatic charge/discharge measurements. Figure 4a shows CV curves of the three samples in a voltage range of 1.5–4.3 V recorded at a scan rate of 0.5 mV s$^{-1}$. All cells exhibited an open-circuit potential of 2.8 V. The appearance of multiple redox peaks in the CV curves can be ascribed to the participation of different metal ions in the electrochemical charge/discharge process. The redox peak below 2.0 V is attributed to the Mn$^{4+}$/Mn$^{3+}$ redox couple, while the peaks above 3.0 V correspond to the Co$^{3+}$/Co$^{2+}$ redox couple. In line with other reports, Mn does not contribute to the capacity when the cutoff voltage is restricted to 2.0 V. However, when the cell is discharged to 1.5 V, Mn$^{4+}$ is activated and contributes a reversible capacity, as evident from the CV curves. The peaks appear to be the same for all three samples, irrespective of the small amount of aluminum doping in MC2.
and MC5. This is attributed to the chemical inertness of the dopant, which means its participation in the electrochemical charge/discharge process is minimal.37

Figure 4b shows the initial charge/discharge curves for all three samples in a voltage range of 1.5−4.3 V at a current rate of 85 mA g⁻¹ (1C = 136 mAh g⁻¹). The well-balanced atomic stoichiometry of Mn and Co makes the cathodes more stable.
over the entire 1.5–4.3 V voltage range. The polarization observed in the initial charge/discharge curve is attributed to several factors including electrolyte degradation at higher voltages, structural changes, and the presence of impurities; this causes capacity fading over prolonged cycling. The charge/discharge curves display a smooth voltage plateau without any step-like voltage features, which is a common feature of mixed binary TMOs. In a previous study, we focused on the suppression of stepwise voltage plateaus using structural doping and metal oxide coating. Herein, we focused on the impact of foreign elements replacing Mn ions in the MC0 structure. Two voltage plateaus appear in the charge/discharge curve of MC0 at 3.9 and 1.8 V, corresponding to the redox reactions of CO2+/Co3+ and Mn4+/Mn3+, respectively.29 MC0 delivers an initial capacity of 149 mAh g⁻¹ at 85 mA g⁻¹, whereas the initial capacity of the aluminum-doped samples is considerably reduced to 141 and 143 mAh g⁻¹ for MC2 and MC5, respectively. This is attributed to the replacement of redox-active Mn with electrochemically inactive aluminum ions. However, the Al³⁺-doped samples exhibit a higher Coulombic efficiency than the undoped sample; this indicates that MC2 and MC5 exhibit more reversible charge/discharge than MC0. The Coulombic efficiency of aluminum-doped samples remained around 97% except for the first few cycles, indicating the existence of irreversible decomposition of electrolyte in the initial few cycles. The separation between the charge/discharge curves is greater for MC0, with a visible voltage plateau. Doping in 0.02 mol of Al³⁺ decreases the separation and increases the slope of the voltage plateau, which is attributed to the improved structural stability and wider interlayer spacing as evident from the XRD analysis. This indicates a reduced cyclic polarization in the cathode along with improved battery performance. Figure 4c shows the cyclic stability of MC0, MC2, and MC5 over 100 cycles at a constant current rate of 85 mA g⁻¹. Initially, MC0 exhibits the highest capacity of 149 mAh g⁻¹, which is higher than that of many reported P2 layered cathode materials. However, MC0 undergoes severe capacity fading and only maintains 70% of its initial capacity after 100 cycles. There are several potential reasons for this capacity fading. Structural transition at higher voltages is the primary cause of capacity fading in many P-type layered oxides and originates from greater repulsion between the oxygen layers when a significant number of Na ions are deeply extracted from the cathode structure. Considering the arrangements of atoms, the structure of P- and O-type cathodes can be easily explained. The stacking patterns of P2-type and O2-type materials are AABB and ABCB, respectively. Hence, the phase transition from P- to O-type can occur easily by simple gliding of the oxygen layers without breaking TM–O

Table 5. Refined Crystal Site and Atomic Occupancies of MC5

<table>
<thead>
<tr>
<th>atom</th>
<th>site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>occ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na1</td>
<td>12j</td>
<td>0.55100</td>
<td>0.26400</td>
<td>0.25000</td>
<td>0.092</td>
</tr>
<tr>
<td>Na2</td>
<td>2b</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.25000</td>
<td>0.430</td>
</tr>
<tr>
<td>Mn</td>
<td>2a</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.458</td>
</tr>
<tr>
<td>Co</td>
<td>2a</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.482</td>
</tr>
<tr>
<td>Al</td>
<td>2a</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.035</td>
</tr>
<tr>
<td>O</td>
<td>4f</td>
<td>0.33333</td>
<td>0.66667</td>
<td>0.09430</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 6. Interatomic Distances, Slab Thicknesses, and d Spacings of the Na Layer for All Samples

<table>
<thead>
<tr>
<th></th>
<th>MC0</th>
<th>MC2</th>
<th>MC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM–O (Å)</td>
<td>1.955</td>
<td>1.948</td>
<td>1.940</td>
</tr>
<tr>
<td>TMO2 (Å)</td>
<td>2.162</td>
<td>2.133</td>
<td>2.109</td>
</tr>
<tr>
<td>O–O (Å)</td>
<td>2.707</td>
<td>2.685</td>
<td>2.664</td>
</tr>
<tr>
<td>Na1–O (Å)</td>
<td>2.153</td>
<td>2.193</td>
<td>2.280</td>
</tr>
<tr>
<td>Na2–O (Å)</td>
<td>2.371</td>
<td>2.380</td>
<td>2.384</td>
</tr>
<tr>
<td>d spacing (Å)</td>
<td>3.444</td>
<td>3.469</td>
<td>3.481</td>
</tr>
</tbody>
</table>

Figure 2. XPS Spectra and peak fittings for the different elements in the powder samples: (a) Mn, (b) Co, and (c) Al. SEM images of the samples: (d) MC0, (e) MC2, and (f) MC5.

MC0 delivers an initial capacity of 149 mAh g⁻¹ at 85 mA g⁻¹, whereas the initial capacity of the aluminum-doped samples is considerably reduced to 141 and 143 mAh g⁻¹ for MC2 and MC5, respectively. This is attributed to the replacement of redox-active Mn with electrochemically inactive aluminum ions. However, the Al³⁺-doped samples exhibit a higher Coulombic efficiency than the undoped sample; this indicates that MC2 and MC5 exhibit more reversible charge/discharge than MC0. The Coulombic efficiency of aluminum-doped samples remained around 97% except for the first few cycles, indicating the existence of irreversible decomposition of electrolyte in the initial few cycles. The separation between the charge/discharge curves is greater for MC0, with a visible voltage plateau. Doping in 0.02 mol of Al³⁺ decreases the separation and increases the slope of the voltage plateau, which is attributed to the improved structural stability and wider interlayer spacing as evident from the XRD analysis. This indicates a reduced cyclic polarization in the cathode along with improved battery performance. Figure 4c shows the cyclic stability of MC0, MC2, and MC5 over 100 cycles at a constant current rate of 85 mA g⁻¹. Initially, MC0 exhibits the highest capacity of 149 mAh g⁻¹, which is higher than that of many reported P2 layered cathode materials. However, MC0 undergoes severe capacity fading and only maintains 70% of its initial capacity after 100 cycles. There are several potential reasons for this capacity fading. Structural transition at higher voltages is the primary cause of capacity fading in many P-type layered oxides and originates from greater repulsion between the oxygen layers when a significant number of Na ions are deeply extracted from the cathode structure. Considering the arrangements of atoms, the structure of P- and O-type cathodes can be easily explained. The stacking patterns of P2-type and O2-type materials are AABB and ABCB, respectively. Hence, the phase transition from P- to O-type can occur easily by simple gliding of the oxygen layers without breaking TM–O

Table 5. Refined Crystal Site and Atomic Occupancies of MC5

<table>
<thead>
<tr>
<th>atom</th>
<th>site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>occ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na1</td>
<td>12j</td>
<td>0.55100</td>
<td>0.26400</td>
<td>0.25000</td>
<td>0.092</td>
</tr>
<tr>
<td>Na2</td>
<td>2b</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.25000</td>
<td>0.430</td>
</tr>
<tr>
<td>Mn</td>
<td>2a</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.458</td>
</tr>
<tr>
<td>Co</td>
<td>2a</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.482</td>
</tr>
<tr>
<td>Al</td>
<td>2a</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.035</td>
</tr>
<tr>
<td>O</td>
<td>4f</td>
<td>0.33333</td>
<td>0.66667</td>
<td>0.09430</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 6. Interatomic Distances, Slab Thicknesses, and d Spacings of the Na Layer for All Samples

<table>
<thead>
<tr>
<th></th>
<th>MC0</th>
<th>MC2</th>
<th>MC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM–O (Å)</td>
<td>1.955</td>
<td>1.948</td>
<td>1.940</td>
</tr>
<tr>
<td>TMO2 (Å)</td>
<td>2.162</td>
<td>2.133</td>
<td>2.109</td>
</tr>
<tr>
<td>O–O (Å)</td>
<td>2.707</td>
<td>2.685</td>
<td>2.664</td>
</tr>
<tr>
<td>Na1–O (Å)</td>
<td>2.153</td>
<td>2.193</td>
<td>2.280</td>
</tr>
<tr>
<td>Na2–O (Å)</td>
<td>2.371</td>
<td>2.380</td>
<td>2.384</td>
</tr>
<tr>
<td>d spacing (Å)</td>
<td>3.444</td>
<td>3.469</td>
<td>3.481</td>
</tr>
</tbody>
</table>
bonds. Beyond this structural transition, the capacity fading in the initial few cycles may be caused by catalytic decomposition of the Na-based electrolyte at higher voltages. Hence, restricting the cutoff voltage to around 4 V could be a good way to minimize the capacity fading at the expense of lower capacity. Similarly, manganese-based cathodes suffer from Mn2+ dissolution at lower voltages due to Jahn–Teller distortion. The Mn3+/4+ redox couple is primarily electrochemically active
below 2.0 V. The MC0, MC2, and MC5 CV curves exhibit clear redox peaks below 2.0 V, which are attributed to the participation of Mn redox couples. Electrolyte decomposition and the formation of an SEI (solid−electrolyte interface) layer during the initial cycles cause irreversible capacity loss, which is a common character of high-voltage layered oxides. This reduces the participation of active material in the electrochemical process. Despite this initial capacity loss, it is clear that the aluminum-doped samples exhibit better structural stability than the pristine MC0 material. MC2 retains 83% of its capacity after 100 cycles, which is 12 percentage points higher than the MC0 capacity retention. This is attributed to a decrease in Jahn−Teller distortions upon replacing Mn3+ with Al3+ as this decreases the average Mn3+ concentration, thereby improving the capacity retention.38 The reduced Al−O bond length also creates a wider diffusion channel for Na+ ions to diffuse smoothly without significant distortion of the layered structure. Upon increasing the Al doping to 0.05 mol (MC5), the performance decreases. This may be caused by greater Al3+ doping in octahedral positions, which would result in lattice dislocation by occupying the Na diffusion pathway.28 Thus, a moderate amount of aluminum doping is necessary for improved capacity retention, as shown in Figure 4.

To further probe the rate performance, all samples were charged/discharged in a voltage range of 1.5−4.3 V at different current densities, as shown in Figure 4d. The capacity gradually decreases with increasing current density due to the diffusion-controlled kinetics of the cathode materials.28 MC0 displays capacities of 149, 101, 86, 65, and 43 mAh g−1 at current rates of 85, 170, 340, 680, and 1700 mA g−1, respectively, whereas MC5 exhibits capacities of 143, 100, 87, 69, and 53 mAh g−1 at 85, 170, 340, 680, and 1700 mA g−1, respectively. It can be seen that MC2 and MC5 exhibit superior rate capability compared with MC0. At lower current rates, the effect of aluminum doping is not obvious. However, as the current rate is increased, the aluminum-doped samples exhibit increasingly improved stability. This can be explained as follows. The electrochemical inactivity of Al3+ is the reason for the low capacity at 85 mAh g−1. However, the rate performance is dominated by the structural stability of the Al-doped samples, as confirmed by the XRD measurements. The strength of the Al−O (512 kJ mol−1) bond compared with Mn−O (402 kJ mol−1) prevents expansion and contraction of the layers during repeated insertion and deinsertion of Na+ ions. The lower electronegativity of Al also increases the ionic bonding strength during cycling.42,43 From our results, we conclude that doping an optimum amount of Al3+ is vital for improving cathode performance. Moreover, the enlarged d spacing arising from Al doping is the origin of the high rate performance of MC2, which agrees well with the Rietveld refinement results. MC2 outperforms several reported P2-type layered oxides. For example, Hasa et al.9 studied Na0.5Ni0.23Fe0.13Mn0.63O2 as a high-capacity cathode for SIBs, but its rate performance was limited to 60 mAh g−1 at 5C (715 mA g−1). Liu et al.44 reported P2−Na0.6Ni0.2Co0.2Mn0.5Ti0.1O2 with a capacity of 70 mAh g−1 at a 5C rate. Hemalatha et al.14 incorporated Ni and Mg into a P2−Na0.6MnO2 cathode in place of Jahn−Teller-active Mn3+ ions, and this improved its electrochemical performance, though it could only deliver a capacity of 70 mAh g−1 at 1C. P2−Na0.6Mn0.3Fe0.7O215 has been reported as an earth-abundant cathode material with a highest-ever-reported capacity of 190 mAh g−1 in a voltage...
range of 1.5−4.2 V; however, it could only deliver around 60 mAh g⁻¹ at a 4C rate (1040 mA g⁻¹), which is comparatively less than that reported here. Yuan et al. developed P2−Na₂₀₆₅Mn₄₆₅Co₃₄₅Na₃₁₅O₂ microflakes as a highly stable cathode material by partial substitution of Al₃¹ ions in place of Co₃⁵ ions. The effects of aluminum doping in layered structures have been studied in several layered oxides. The higher strength of Al−O bonds could suppress the expansion and contraction of the interlayers in wider voltage windows. Al doping is thought to improve the stability of the cathode at higher voltages, as predicted by the theoretical calculations of Ceder et al.⁴⁸

To understand the effect of aluminum doping on the kinetic performance of these electrodes, EIS studies were carried out, and the corresponding Nyquist plots are presented in Figure 5a. The inset in Figure 5a shows the corresponding equivalent circuit. Almost all samples exhibit same behavior, with a semicircle in the high-frequency region followed by a straight line in the low-frequency region. These measurements were carried out by applying a 10 mV AC potential in a frequency range of 1 MHz to 10 mHz after the first discharge. At first glance, the Nyquist plots indicate the dominance of charge-transfer and diffusion-controlled processes in the overall electrochemical reaction. In all curves, the high-frequency semicircle denotes the charge-transfer resistance and the sloping line in the low-frequency region denotes the Warburg impedance, which is mainly controlled by the diffusion of sodium ions in the bulk of the electrodes. The MC2 semicircle is smaller than those for MC0 and MC5, which shows that MC2 has the lowest charge-transfer resistance and, thus, 0.02 mol of aluminum is sufficient to provide improved electrochemical performance in SIB cathodes.

Impedance is a powerful tool for determining both the bulk and surface properties of electrodes.⁵⁰ To understand the surface effects of aluminum doping, impedance measurements were conducted at different states of charge and discharge (Figure 5b−d) using the same measurement parameters described above. Before measurement, the cells were subjected to several charge/discharge cycles to activate and stabilize the electrodes. The impedance was measured during charge at 2.8, 3.5, and 4.2 V and during discharge at 3.5 and 1.5 V. The impedance spectra of these types of compounds cannot be described using a single equivalent circuit. In all curves, the high-frequency semicircle is smaller than those for MC0 and MC5, which shows that MC2 has the lowest charge-transfer resistance and, thus, 0.02 mol of aluminum is sufficient to provide improved electrochemical performance in SIB cathodes.

EXPERIMENTAL METHODS

The layered oxide Na₀.₅Mn₀.₄₂Co₀.₅O₂ (MC0) was prepared using a simple sol−gel method, as outlined in Scheme 1. Stoichiometric amounts of sodium acetate (CH₃COONa, Sigma-Aldrich), manganese acetate tetrahydrate (Mn(CH₃COO)₂·4H₂O, Sigma-Aldrich), and cobalt acetate tetrahydrate (Co(CH₃COO)₂·4H₂O, Sigma-Aldrich) were dissolved separately in water (50% aqueous) and stirred for 6 h to decompose nitrate and eliminate water. The sample was then ground, pelletized, and heated at 800 °C for 15 h to obtain the final product. MC2 (Na₀.₅Mn₀.₄₄Al₀.₀₂Co₀.₄O₂) and MC5 (Na₀.₅Mn₀.₄₄Al₀.₅₄Co₀.₀₈O₂) samples were obtained using the same method with the addition of a corresponding amount of Al(NO₃)₃·6H₂O to replace the Mn acetate.

Rietveld refinement confirmed the shrinking of MeO₆ octahedra upon Al doping, as a result of the reduced Al−O bond length, and a corresponding increase in the spacing of the Na diffusion layer. XPS measurements confirmed that aluminum doping does not change the valence state of the Mn and Co ions. These Al-doped microflakes exhibited a specific capacity of 141 mAh g⁻¹ in a voltage window of 1.5−4.3 V at a current density of 85 mAh g⁻¹. Although Al is chemically inactive, it improved the electrochemical performance of MC2, with 83% capacity retention over 100 cycles. This originates from the bulk- and surface-stabilization effects of aluminum doping, as confirmed by Rietveld and EIS analyses. This work will help in developing highly stable cathodes for large-scale energy storage applications in the future.
collected and dried in a vacuum at 160 °C for 4 h before cell fabrication. Charge/discharge studies were performed in a voltage range of 1.5–4.3 V, with varying current rates of 85, 170, 340, 650, and 1700 mAh g⁻¹ using an Arbin BT-2000 battery test system. CV and impedance measurements were conducted using an electrochemical analyzer (SP-150, Biologic, France).

ASSOCIATED CONTENT

2 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcl.7b02012.

Charge, discharge, and Coulombic efficiency plots, capacity retention vs cycle plots, and a comparison between reported P2-type cathodes and our work (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: leeys@chonnam.ac.kr.

ORCID

Hari Vignesh Ramasamy: 0000-0002-8241-2441

Kisuk Kang: 0000-0002-8696-1886

Zhongwei Chen: 0000-0003-3463-5509

Yun-Sung Lee: 0000-0002-6676-2871

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT & Future Planning) (No. 2016R1A4A1012224).

REFERENCES

(22) Wu, X.; Guo, J.; Wang, D.; Zhong, G.; McDonald, M. J.; Yang, Y. P-Type Na0.66Ni0.33XZn0.67O2 as New High-Voltage Cathode Materials for Sodium-Ion Batteries. J. Power Sources 2015, 281, 18–26.

(27) Kalyanpur, K.; Liu, J.; Lushington, A.; Li, R.; Sun, X. Highly Stable Na$_{x}$(Mn$_{0.8}$(Ni$_{0.2}$)O$_{2}$(Co$_{0.3}$)$_{1-x}$O$_{2}$. Cathode Modified by Atomic Layer Deposition for Sodium Ion Batteries by Atomic Layer Deposition for Sodium-Ion Batteries. *ChemSusChem* 2015, 8, 2537–2543.

(30) Ceder, G.; Cheng, J. H.; Berthelot, R.; Guignard, M.; Yoncheva, M.; Stoyanova, R.; Hwang, B. J.; Delmas, C. The P2-Na$_{0.67}$Co$_{0.5}$Mn$_{0.5}$O$_{2}$ Phase: Structure, Physical Properties and Electrochemical Behavior as Positive Electrode in Sodium Battery. *Dalton Trans.* 2011, 40, 9306–9312.

(36) Li, Z.-Y.; Gao, R.; Sun, L.; Hu, Z.; Liu, X. Designing an Advanced P2-Na$_{0.67}$Mn$_{0.65}$Ni$_{0.2}$Co$_{0.15}$O$_{2}$ Layered Cathode Material for Na-Ion Batteries. *J. Mater. Chem. A* 2015, 3, 16272–16278.

(40) Karthikeyan, K.; Amareesh, S.; Kim, S. H.; Aravindan, V.; Lee, Y. S. Influence of Synthesis Technique on the Structural and Electrochemical Properties of “cobalt-Free”, Layered Type Li 1-x-(Mn0.3Ni0.3Fe0.2) xO2 (0 < x < 0.4) Cathode Material for Lithium Secondary Battery. *Electrochim. Acta* 2013, 108, 749–756.
